SIFTing the Relevant from the Irrelevant: Automatically Detecting Objects in Training Images

E. Zhang, M. Mayo
{"title":"SIFTing the Relevant from the Irrelevant: Automatically Detecting Objects in Training Images","authors":"E. Zhang, M. Mayo","doi":"10.1109/DICTA.2009.59","DOIUrl":null,"url":null,"abstract":"Many state-of-the-art object recognition systems rely on identifying the location of objects in images, in order to better learn its visual attributes. In this paper, we propose four simple yet powerful hybrid ROI detection methods (combining both local and global features), based on frequently occurring keypoints. We show that our methods demonstrate competitive performance in two different types of datasets, the Caltech101 dataset and the GRAZ-02 dataset, where the pairs of keypoint bounding box method achieved the best accuracies overall.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many state-of-the-art object recognition systems rely on identifying the location of objects in images, in order to better learn its visual attributes. In this paper, we propose four simple yet powerful hybrid ROI detection methods (combining both local and global features), based on frequently occurring keypoints. We show that our methods demonstrate competitive performance in two different types of datasets, the Caltech101 dataset and the GRAZ-02 dataset, where the pairs of keypoint bounding box method achieved the best accuracies overall.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从不相关中筛选相关:自动检测训练图像中的目标
许多最先进的物体识别系统依赖于识别图像中物体的位置,以便更好地学习其视觉属性。在本文中,我们提出了四种简单而强大的混合ROI检测方法(结合局部和全局特征),基于频繁出现的关键点。我们表明,我们的方法在两种不同类型的数据集(Caltech101数据集和grazi -02数据集)中表现出竞争性的性能,其中关键点边界框对方法总体上达到了最佳精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1