Cubic Regularized ADMM with Convergence to a Local Minimum in Non-convex Optimization

Zai Shi, A. Eryilmaz
{"title":"Cubic Regularized ADMM with Convergence to a Local Minimum in Non-convex Optimization","authors":"Zai Shi, A. Eryilmaz","doi":"10.1109/ALLERTON.2019.8919772","DOIUrl":null,"url":null,"abstract":"How to escape saddle points is a critical issue in non-convex optimization. Previous methods on this issue mainly assume that the objective function is Hessian-Lipschitz, which leave a gap for applications using non-Hessian-Lipschitz functions. In this paper, we propose Cubic Regularized Alternating Direction Method of Multipliers (CR-ADMM) to escape saddle points of separable non-convex functions containing a non-Hessian-Lipschitz component. By carefully choosing a parameter, we prove that CR-ADMM converges to a local minimum of the original function with a rate of $O(1 /T^{1/3})$ in time horizon T, which is faster than gradient-based methods. We also show that when one or more steps of CR-ADMM are not solved exactly, CRADMM can converge to a neighborhood of the local minimum. Through the experiments of matrix factorization problems, CRADMM is shown to have a faster rate and a lower optimality gap compared with other gradient-based methods. Our approach can also find applications in other scenarios where regularized non-convex cost minimization is performed, such as parameter optimization of deep neural networks.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How to escape saddle points is a critical issue in non-convex optimization. Previous methods on this issue mainly assume that the objective function is Hessian-Lipschitz, which leave a gap for applications using non-Hessian-Lipschitz functions. In this paper, we propose Cubic Regularized Alternating Direction Method of Multipliers (CR-ADMM) to escape saddle points of separable non-convex functions containing a non-Hessian-Lipschitz component. By carefully choosing a parameter, we prove that CR-ADMM converges to a local minimum of the original function with a rate of $O(1 /T^{1/3})$ in time horizon T, which is faster than gradient-based methods. We also show that when one or more steps of CR-ADMM are not solved exactly, CRADMM can converge to a neighborhood of the local minimum. Through the experiments of matrix factorization problems, CRADMM is shown to have a faster rate and a lower optimality gap compared with other gradient-based methods. Our approach can also find applications in other scenarios where regularized non-convex cost minimization is performed, such as parameter optimization of deep neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非凸优化中收敛到局部极小的三次正则ADMM
如何摆脱鞍点是非凸优化中的一个关键问题。以往的方法主要假设目标函数为Hessian-Lipschitz函数,这给非Hessian-Lipschitz函数的应用留下了空白。在本文中,我们提出了三次正则化交替方向乘法器(CR-ADMM)来逃避包含非hessian - lipschitz分量的可分离非凸函数的鞍点。通过仔细选择参数,我们证明了CR-ADMM在时间范围T内收敛到原始函数的局部极小值,速度为$O(1 /T^{1/3})$,比基于梯度的方法更快。我们还证明了当CR-ADMM的一个或多个步骤没有精确求解时,CRADMM可以收敛到局部最小值的邻域。通过矩阵分解问题的实验表明,与其他基于梯度的方法相比,CRADMM具有更快的速度和更小的最优性差距。我们的方法也可以在执行正则化非凸成本最小化的其他场景中找到应用,例如深度神经网络的参数优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels Scheduling Policies for Minimizing Job Migration and Server Running Costs for Cloud Computing Platforms Explicit Low-complexity Codes for Multiple Access Channel Resolvability Byzantine Fault-Tolerant Parallelized Stochastic Gradient Descent for Linear Regression Deep Reinforcement Learning Based Power Control for Wireless Multicast Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1