Adaptive Deep Reinforcement Learning Approach for Service Migration in MEC-Enabled Vehicular Networks

Sabri Khamari, Rachedi Abdennour, T. Ahmed, M. Mosbah
{"title":"Adaptive Deep Reinforcement Learning Approach for Service Migration in MEC-Enabled Vehicular Networks","authors":"Sabri Khamari, Rachedi Abdennour, T. Ahmed, M. Mosbah","doi":"10.1109/ISCC58397.2023.10218103","DOIUrl":null,"url":null,"abstract":"Multiaccess edge computing (MEC) has emerged as a promising technology for time-sensitive and computation-intensive tasks. However, user mobility, particularly in vehicular networks, and limited coverage of Edge Server result in service interruptions and a decrease in Quality of Service (QoS). Service migration has the potential to effectively resolve this issue. In this paper, we investigate the problem of service migration in a MEC-enabled vehicular network to minimize the total service latency and migration cost. To this end, we formulate the service migration problem as a Markov decision process (MDP). We present novel contributions by providing optimal adaptive migration strategies which consider vehicle mobility, server load, and different service profiles. We solve the problem using the Double Deep Q-network algorithm (DDQN). Simulation results show that the proposed DDQN scheme achieves a better tradeoff between latency and migration cost compared with other approaches.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiaccess edge computing (MEC) has emerged as a promising technology for time-sensitive and computation-intensive tasks. However, user mobility, particularly in vehicular networks, and limited coverage of Edge Server result in service interruptions and a decrease in Quality of Service (QoS). Service migration has the potential to effectively resolve this issue. In this paper, we investigate the problem of service migration in a MEC-enabled vehicular network to minimize the total service latency and migration cost. To this end, we formulate the service migration problem as a Markov decision process (MDP). We present novel contributions by providing optimal adaptive migration strategies which consider vehicle mobility, server load, and different service profiles. We solve the problem using the Double Deep Q-network algorithm (DDQN). Simulation results show that the proposed DDQN scheme achieves a better tradeoff between latency and migration cost compared with other approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于mec的车辆网络中业务迁移的自适应深度强化学习方法
多访问边缘计算(MEC)已经成为一种有前途的技术,用于时间敏感和计算密集型任务。然而,用户的移动性,特别是在车载网络中,以及边缘服务器的有限覆盖会导致服务中断和服务质量(QoS)下降。服务迁移有可能有效地解决这个问题。在本文中,我们研究了一个支持mec的车辆网络中的服务迁移问题,以最小化总服务延迟和迁移成本。为此,我们将服务迁移问题表述为马尔可夫决策过程(MDP)。我们通过提供考虑车辆移动性、服务器负载和不同服务配置文件的最佳自适应迁移策略,提出了新的贡献。我们使用双深度q -网络算法(DDQN)来解决这个问题。仿真结果表明,与其他方法相比,所提出的DDQN方案在时延和迁移成本之间取得了较好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
(POSTER) Advanced LTCC-Integrated Technologies for mmWave 5G/Satellite Communication Antennas Multiple Information Extraction and Interaction for Emotion Recognition in Multi-Party Conversation A GRASP-Based Algorithm for Virtual Network Embedding Designing Healthcare Relational Agents: A Conceptual Framework with User-Centered Design Guidelines Analysis of One-Bit DAC for RIS-Assisted MU Massive MIMO Systems with Efficient Autoencoder Based Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1