Stochastic, Computational and Convergence Aspects of Distribution Power Flow Algorithms

E. Haesen, J. Driesen, R. Belmans
{"title":"Stochastic, Computational and Convergence Aspects of Distribution Power Flow Algorithms","authors":"E. Haesen, J. Driesen, R. Belmans","doi":"10.1109/PCT.2007.4538528","DOIUrl":null,"url":null,"abstract":"This paper discusses uncertainties in distribution system analysis. Special emphasis lies with distributed generation (DG) units. Both backward-forward sweeps and Newton-Raphson based current injection updates are discussed. A first class of stochastic modeling is of probabilistic nature. In analytic probabilistic methods a linearization of the power flow equations is applied. Non-linearities are respected in numerical Monte Carlo analysis when using the appropriate convergence criteria. The second class uses qualitative uncertainty descriptions in boundary and fuzzy power flow methods. Correlation of loads and DG is always a crucial aspect. These aspects are elaborated with regard to robust methodologies for setting benchmarks of DG performance based on stochastic programming and evolutionary algorithms.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper discusses uncertainties in distribution system analysis. Special emphasis lies with distributed generation (DG) units. Both backward-forward sweeps and Newton-Raphson based current injection updates are discussed. A first class of stochastic modeling is of probabilistic nature. In analytic probabilistic methods a linearization of the power flow equations is applied. Non-linearities are respected in numerical Monte Carlo analysis when using the appropriate convergence criteria. The second class uses qualitative uncertainty descriptions in boundary and fuzzy power flow methods. Correlation of loads and DG is always a crucial aspect. These aspects are elaborated with regard to robust methodologies for setting benchmarks of DG performance based on stochastic programming and evolutionary algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配电网潮流算法的随机、计算和收敛方面
本文讨论了配电系统分析中的不确定性问题。特别强调的是分布式发电(DG)单元。讨论了前后扫描和基于牛顿-拉夫森的电流注入更新。第一类随机建模具有概率性质。在解析概率方法中,对潮流方程进行线性化处理。当使用适当的收敛准则时,在数值蒙特卡罗分析中考虑了非线性。第二类采用边界法和模糊潮流法中的定性不确定性描述。负荷与DG的相关性一直是一个重要的方面。这些方面详细阐述了基于随机规划和进化算法设置DG性能基准的稳健方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Northeast Asia Power Interconnection Routs and Representative Studies in South Korea PSO-based Hybrid Generating System Design Incorporating Reliability Evaluation and Generation/Load Forecasting Actual Problems Of The Distribution Cable Networks In Germany - Ageing And Structural Impact On The Reliability Study on Power Quality Control in Multiple Renewable Energy Hybrid MicroGrid System Configuration of a Large Scale Analog Emulator for Power System Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1