{"title":"Formally verified 32- and 64-bit integer division using double-precision floating-point arithmetic","authors":"D. Monniaux, Alice Pain","doi":"10.1109/ARITH54963.2022.00032","DOIUrl":null,"url":null,"abstract":"Some recent processors are not equipped with an integer division unit. Compilers then implement division by a call to a special function supplied by the processor designers, which implements division by a loop producing one bit of quotient per iteration. This hinders compiler optimizations and results in non-constant time computation, which is a problem in some applications. We advocate instead using the processor's floating-point unit, and propose code that the compiler can easily interleave with other computations. We fully proved the correctness of our algorithm, which mixes floating-point and fixed-bitwidth integer computations, using the Coq proof assistant and successfully integrated it into the CompCert formally verified compiler.","PeriodicalId":268661,"journal":{"name":"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH54963.2022.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Some recent processors are not equipped with an integer division unit. Compilers then implement division by a call to a special function supplied by the processor designers, which implements division by a loop producing one bit of quotient per iteration. This hinders compiler optimizations and results in non-constant time computation, which is a problem in some applications. We advocate instead using the processor's floating-point unit, and propose code that the compiler can easily interleave with other computations. We fully proved the correctness of our algorithm, which mixes floating-point and fixed-bitwidth integer computations, using the Coq proof assistant and successfully integrated it into the CompCert formally verified compiler.