{"title":"CO-O衝突によるCOの内部モード緩和と解離のDSMC-QCT解析","authors":"和央 藤田","doi":"10.2322/JJSASS.57.405","DOIUrl":null,"url":null,"abstract":"The coupled rotation-vibration-dissociation analysis of carbon monoxide is conducted by the state-resolved direct simulation Monte-Carlo (DSMC) model incorporated with a quasi-classical trajectory (QCT) model for computation of inter-molecular collision dynamics. The potential energy surface for the triatomic system is described by the London-Eyring-Polanyi-Sato (LEPS) potential, which is determined from the spectroscopic constants of diatomic molecules and the results of ab initio electronic structure calculations. A comparison is made between the numerical results and the experimental data in terms of the macroscopic relaxation parameters and the dissociation rate coefficients at moderate temperatures. Finally, the relaxation parameters and the dissociation rate coefficients at extremely high temperatures where the experimental data are unavailable have been estimated by the DSMC-QCT calculations.","PeriodicalId":144591,"journal":{"name":"Journal of The Japan Society for Aeronautical and Space Sciences","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/JJSASS.57.405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The coupled rotation-vibration-dissociation analysis of carbon monoxide is conducted by the state-resolved direct simulation Monte-Carlo (DSMC) model incorporated with a quasi-classical trajectory (QCT) model for computation of inter-molecular collision dynamics. The potential energy surface for the triatomic system is described by the London-Eyring-Polanyi-Sato (LEPS) potential, which is determined from the spectroscopic constants of diatomic molecules and the results of ab initio electronic structure calculations. A comparison is made between the numerical results and the experimental data in terms of the macroscopic relaxation parameters and the dissociation rate coefficients at moderate temperatures. Finally, the relaxation parameters and the dissociation rate coefficients at extremely high temperatures where the experimental data are unavailable have been estimated by the DSMC-QCT calculations.