A novel x-ray imaging system and its imaging performance

Chunyu Yu, Benkang Chang, Shiyun Wang, Junju Zhang, Xiao Yao
{"title":"A novel x-ray imaging system and its imaging performance","authors":"Chunyu Yu, Benkang Chang, Shiyun Wang, Junju Zhang, Xiao Yao","doi":"10.1117/12.710678","DOIUrl":null,"url":null,"abstract":"Since x-ray was discovered and applied to the imaging technology, the x-ray imaging techniques have experienced several improvements, from film-screen, x-ray image intensifier, CR to DR. To store and transmit the image information conveniently, the digital imaging is necessary for the imaging techniques in medicine and biology. Usually as the intensifying screen technique as for concerned, to get the digital image signals, the CCD was lens coupled directly to the screen, but which suffers from a loss of x-ray signal and resulted in the poor x-ray image perfonnance. Therefore, to improve the image performance, we joined the brightness intensifier, which, was named the Low Light Level (LLL) image intensifier in military affairs, between the intensifying screen and the CCD and designed the novel x-ray imaging system. This design method improved the image performance of the whole system thus decreased the x-ray dose. Comparison between two systems with and without the brightness intensifier was given in detail in this paper. Moreover, the main noise source of the image produced by the novel system was analyzed, and in this paper, the original images produced by the novel x-ray imaging system and the processed images were given respectively. It was clear that the image performance was satisfied and the x-ray imaging system can be used in security checking and many other nondestructive checking fields.","PeriodicalId":110373,"journal":{"name":"International Conference on Photonics and Imaging in Biology and Medicine","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Imaging in Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.710678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Since x-ray was discovered and applied to the imaging technology, the x-ray imaging techniques have experienced several improvements, from film-screen, x-ray image intensifier, CR to DR. To store and transmit the image information conveniently, the digital imaging is necessary for the imaging techniques in medicine and biology. Usually as the intensifying screen technique as for concerned, to get the digital image signals, the CCD was lens coupled directly to the screen, but which suffers from a loss of x-ray signal and resulted in the poor x-ray image perfonnance. Therefore, to improve the image performance, we joined the brightness intensifier, which, was named the Low Light Level (LLL) image intensifier in military affairs, between the intensifying screen and the CCD and designed the novel x-ray imaging system. This design method improved the image performance of the whole system thus decreased the x-ray dose. Comparison between two systems with and without the brightness intensifier was given in detail in this paper. Moreover, the main noise source of the image produced by the novel system was analyzed, and in this paper, the original images produced by the novel x-ray imaging system and the processed images were given respectively. It was clear that the image performance was satisfied and the x-ray imaging system can be used in security checking and many other nondestructive checking fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型的x射线成像系统及其成像性能
自从x射线被发现并应用于成像技术以来,x射线成像技术经历了从胶片屏幕、x射线图像增强器、CR到dr的几次发展。为了方便地存储和传输图像信息,数字成像技术是医学和生物学成像技术所必需的。通常在强化屏技术中,为了获得数字图像信号,CCD是通过镜头直接耦合到屏幕上,但这样会造成x射线信号的丢失,导致x射线成像性能差。因此,为了提高图像性能,我们在增强屏和CCD之间加入了亮度增强器,在军事上被称为低光级(Low Light Level, LLL)图像增强器,设计了新型的x射线成像系统。这种设计方法提高了整个系统的成像性能,从而降低了x射线剂量。本文对两种系统进行了详细的亮度增强器和不增强器的比较。分析了新型x射线成像系统产生图像的主要噪声源,给出了新型x射线成像系统产生的原始图像和处理后的图像。结果表明,该成像系统具有良好的成像性能,可用于安全检测和其他无损检测领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toxicological effect evaluation of arsenic exposure in clam Ruditapes philippinarum by using FLIM Label-free analysis of single microparticles and nanoscale exosomes with two-dimensional light scattering technology Photoacoustic-photothermal visualisation of gastric tissues based on COMSOL Assessment of pilot stress based on functional near-infrared techniques Vessel segmentation and quantification in ultra-wide-field OCTA images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1