On the Performance of Active Noise Control FX-LMS and FBFX-LMS Algorithms for Duct Network Noise Attenuation

O.R. Flotte-Hernandez, A. Pineda-Olivares, G. Dieck-Assad, A. Ávila-Ortega, S. Martínez-Chapa, F. Bouchereau-Lara
{"title":"On the Performance of Active Noise Control FX-LMS and FBFX-LMS Algorithms for Duct Network Noise Attenuation","authors":"O.R. Flotte-Hernandez, A. Pineda-Olivares, G. Dieck-Assad, A. Ávila-Ortega, S. Martínez-Chapa, F. Bouchereau-Lara","doi":"10.1109/CERMA.2008.30","DOIUrl":null,"url":null,"abstract":"This paper develops an active noise control system (ANC) prototype to be used over a duct network model. The FX-LMS and FBFX-LMS algorithms were implemented using the TMS320C50 fixed point DSP system. Test results show that the FX-LMS algorithm achieves attenuations of up to 43 dB (at 300 Hz) and a mean attenuation of 38.72 dB for frequencies from 100 to 450 Hz. On the other hand, the FBFX-LMS algorithm achieves a mean attenuation of 31.52 dB for the frequency range from 100 to 450 Hz. Moreover, the step size parameter mu was optimized experimentally to obtain the maximum possible attenuation in the frequency range from 100 to 500 Hz. The best possible value for mu was 2048 and the optimized number of filter coefficients was M=128. Finally, the performance analysis illustrates the simplicity of the fixed point DSP solution in the ANC duct network noise cancellation systems.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper develops an active noise control system (ANC) prototype to be used over a duct network model. The FX-LMS and FBFX-LMS algorithms were implemented using the TMS320C50 fixed point DSP system. Test results show that the FX-LMS algorithm achieves attenuations of up to 43 dB (at 300 Hz) and a mean attenuation of 38.72 dB for frequencies from 100 to 450 Hz. On the other hand, the FBFX-LMS algorithm achieves a mean attenuation of 31.52 dB for the frequency range from 100 to 450 Hz. Moreover, the step size parameter mu was optimized experimentally to obtain the maximum possible attenuation in the frequency range from 100 to 500 Hz. The best possible value for mu was 2048 and the optimized number of filter coefficients was M=128. Finally, the performance analysis illustrates the simplicity of the fixed point DSP solution in the ANC duct network noise cancellation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动噪声控制FX-LMS和FBFX-LMS算法在管道网络噪声抑制中的性能研究
本文开发了一个用于管道网络模型的主动噪声控制系统(ANC)原型。FX-LMS和FBFX-LMS算法采用TMS320C50定点DSP系统实现。测试结果表明,FX-LMS算法在300 Hz时的衰减高达43 dB,在100 ~ 450 Hz频率范围内的平均衰减为38.72 dB。另一方面,FBFX-LMS算法在100 ~ 450 Hz频率范围内的平均衰减为31.52 dB。此外,通过实验优化步长参数mu,在100 ~ 500 Hz的频率范围内获得最大可能的衰减。结果表明,最佳筛选系数M=128,最佳筛选系数mu为2048。最后,性能分析说明了定点DSP解决方案在ANC管道网络降噪系统中的简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling a Vehicle Using Bond Graphs The Laplacian Artificial Potential Field (LAPF) for the Path Planning of Robotic Manipulators Cooperative Adaptive Behavior Acquisition in Mobile Robot Swarms Using Neural Networks and Genetic Algorithms Design and Construction of an EEG Data Acquisition System for Measurement of Auditory Evoked Potentials Proposal for a Remote Surgery System Based on Wireless Communications, Electromyography and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1