Complexity analysis of reinforcement learning and its application to robotics

Bocheng Li, L. Xia, Qianchuan Zhao
{"title":"Complexity analysis of reinforcement learning and its application to robotics","authors":"Bocheng Li, L. Xia, Qianchuan Zhao","doi":"10.1109/COASE.2017.8256303","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) is a widely adopted theory in machine learning, which aims to handle the optimal decision of intelligent agent interacting with the stochastic dynamic environment. Its origin may come from the motivation of phycological observations since 1960's [1]. It blooms recently as the emerging of large sample data and powerful computation facility, especially the AlphaGo's beat over the human top Go player in 2016 [2].","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Reinforcement learning (RL) is a widely adopted theory in machine learning, which aims to handle the optimal decision of intelligent agent interacting with the stochastic dynamic environment. Its origin may come from the motivation of phycological observations since 1960's [1]. It blooms recently as the emerging of large sample data and powerful computation facility, especially the AlphaGo's beat over the human top Go player in 2016 [2].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强化学习的复杂性分析及其在机器人中的应用
强化学习(Reinforcement learning, RL)是机器学习中被广泛采用的一种理论,其目的是处理智能体与随机动态环境相互作用的最优决策。它的起源可能来自20世纪60年代以来的生理学观察的动机[1]。近年来,随着大样本数据和强大计算能力的出现,特别是2016年AlphaGo击败了人类顶级围棋选手[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on performance evaluation and status-based decision for cyber-physical production systems Optimization of deterministic timed weighted marked graphs An optimization-simulation approach for long term care structure assignment problem for elderly people Stochastic simulation of clinical pathways from raw health databases A circuit-breaker use-case operated by a humanoid in aircraft manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1