Fault tolerant Four-State Logic by using Self-Healing Cells

T. Panhofer, W. Friesenbichler, M. Delvai
{"title":"Fault tolerant Four-State Logic by using Self-Healing Cells","authors":"T. Panhofer, W. Friesenbichler, M. Delvai","doi":"10.1109/ICCD.2008.4751832","DOIUrl":null,"url":null,"abstract":"The trend towards higher integration and faster operating speed leads to decreasing feature sizes and lower supply voltages in modern integrated circuits. These properties make the circuits more error-prone, requiring a fault tolerant implementation for applications demanding high reliability, e.g. space missions. In previous work we presented a concept how to obtain fault tolerant digital circuits by using asynchronous four-state logic (FSL). This type of logic already exhibits a high degree of fault tolerance where most faults simply halt the circuit (deadlock). The remaining types of faults are handled by temporal redundancy. Adding a deadlock detection unit and introducing the concept of self-healing cells (SHCs) leads to a highly reliable circuit that is able to tolerate even multiple faults. However our experiments revealed that some specific fault constellations neither cause a deadlock nor are they detected by a redundant calculation. We present two improved ways of error detection, which allow to capture even these types of faults. Further, a comparison between the size of an SHC and the achieved fault tolerance wrt. multiple faults is performed.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The trend towards higher integration and faster operating speed leads to decreasing feature sizes and lower supply voltages in modern integrated circuits. These properties make the circuits more error-prone, requiring a fault tolerant implementation for applications demanding high reliability, e.g. space missions. In previous work we presented a concept how to obtain fault tolerant digital circuits by using asynchronous four-state logic (FSL). This type of logic already exhibits a high degree of fault tolerance where most faults simply halt the circuit (deadlock). The remaining types of faults are handled by temporal redundancy. Adding a deadlock detection unit and introducing the concept of self-healing cells (SHCs) leads to a highly reliable circuit that is able to tolerate even multiple faults. However our experiments revealed that some specific fault constellations neither cause a deadlock nor are they detected by a redundant calculation. We present two improved ways of error detection, which allow to capture even these types of faults. Further, a comparison between the size of an SHC and the achieved fault tolerance wrt. multiple faults is performed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自愈细胞的容错四态逻辑
现代集成电路的集成度越来越高,运行速度越来越快,特征尺寸越来越小,电源电压越来越低。这些特性使电路更容易出错,需要容错实现要求高可靠性的应用,例如空间任务。在以前的工作中,我们提出了一种利用异步四态逻辑(FSL)获得容错数字电路的概念。这种类型的逻辑已经显示出高度的容错性,大多数故障只是使电路停止(死锁)。其余类型的故障由时间冗余处理。添加死锁检测单元并引入自愈细胞(shc)的概念,可以实现高可靠的电路,甚至可以容忍多个故障。然而,我们的实验表明,一些特定的故障星座既不会引起死锁,也不会被冗余计算检测到。我们提出了两种改进的错误检测方法,它们甚至可以捕获这些类型的错误。此外,还比较了SHC的大小和实现的容错能力。出现多个故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fine-grain dynamic sleep control scheme in MIPS R3000 Efficiency of thread-level speculation in SMT and CMP architectures - performance, power and thermal perspective Synthesis of parallel prefix adders considering switching activities A floating-point fused dot-product unit Mathematical analysis of buffer sizing for Network-on-Chips under multimedia traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1