{"title":"Mining optimized association rules with categorical and numeric attributes","authors":"R. Rastogi, Kyuseok Shim","doi":"10.1109/ICDE.1998.655813","DOIUrl":null,"url":null,"abstract":"Association rules are useful for determining correlations between attributes of a relation and have applications in marketing, financial and retail sectors. Furthermore, optimized association rules are an effective way to focus on the most interesting characteristics involving certain attributes. Optimized association rules are permitted to contain uninstantiated attributes and the problem is to determine instantiations such that either the support or confidence of the rule is maximized. We generalize the optimized association rules problem in three ways: (1) association rules are allowed to contain disjunctions over uninstantiated attributes; (2) association rules are permitted to contain an arbitrary number of uninstantiated attributes; and (3) uninstantiated attributes can be either categorical or numeric. Our generalized association rules enable us to extract more useful information about seasonal and local patterns involving multiple attributes. We present effective techniques for pruning the search space when computing optimized association rules for both categorical and numeric attributes. Finally, we report the results of our experiments that indicate that our pruning algorithms are efficient for a large number of uninstantiated attributes, disjunctions and values in the domain of the attributes.","PeriodicalId":264926,"journal":{"name":"Proceedings 14th International Conference on Data Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1998.655813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 170
Abstract
Association rules are useful for determining correlations between attributes of a relation and have applications in marketing, financial and retail sectors. Furthermore, optimized association rules are an effective way to focus on the most interesting characteristics involving certain attributes. Optimized association rules are permitted to contain uninstantiated attributes and the problem is to determine instantiations such that either the support or confidence of the rule is maximized. We generalize the optimized association rules problem in three ways: (1) association rules are allowed to contain disjunctions over uninstantiated attributes; (2) association rules are permitted to contain an arbitrary number of uninstantiated attributes; and (3) uninstantiated attributes can be either categorical or numeric. Our generalized association rules enable us to extract more useful information about seasonal and local patterns involving multiple attributes. We present effective techniques for pruning the search space when computing optimized association rules for both categorical and numeric attributes. Finally, we report the results of our experiments that indicate that our pruning algorithms are efficient for a large number of uninstantiated attributes, disjunctions and values in the domain of the attributes.