Scalability of Parareal for Large Power Grid Simulations

F. Joseph, G. Gurrala
{"title":"Scalability of Parareal for Large Power Grid Simulations","authors":"F. Joseph, G. Gurrala","doi":"10.1109/PDCAT46702.2019.00061","DOIUrl":null,"url":null,"abstract":"The Parareal in time algorithm belongs to a class of temporal decomposition for a time parallel solution of differential equations. This paper investigates the approaches through which the Parareal algorithm can be deployed under a Message Passing Interface (MPI) environment. A state space model of a 10 state cascaded π network model of a transmission line, representing the computational load and nature of ordinary differential equations (ODE) in an electrical power grid/system, is used for experimentation. Two types of implementation approaches, Master Worker and Distributed, are discussed and scaling tests are performed. Analytical expressions for each approach based on the idling and non-idling processor deployment are derived. Using the expressions, weak scaling is performed to show the conditional scalability of Parareal under growing state size and integration steps.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Parareal in time algorithm belongs to a class of temporal decomposition for a time parallel solution of differential equations. This paper investigates the approaches through which the Parareal algorithm can be deployed under a Message Passing Interface (MPI) environment. A state space model of a 10 state cascaded π network model of a transmission line, representing the computational load and nature of ordinary differential equations (ODE) in an electrical power grid/system, is used for experimentation. Two types of implementation approaches, Master Worker and Distributed, are discussed and scaling tests are performed. Analytical expressions for each approach based on the idling and non-idling processor deployment are derived. Using the expressions, weak scaling is performed to show the conditional scalability of Parareal under growing state size and integration steps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大电网模拟的拟面可扩展性
时间拟面算法属于微分方程时间并行解的一类时间分解算法。本文研究了在消息传递接口(Message Passing Interface, MPI)环境下部署并行算法的方法。采用一种状态空间模型的传输线的10状态级联π网络模型,表示了一个电力电网/系统的计算负荷和常微分方程(ODE)的性质,用于实验。讨论了两种类型的实现方法,主Worker和分布式,并进行了扩展测试。推导了基于空闲和非空闲处理器部署的每种方法的解析表达式。利用这些表达式,进行弱缩放,以显示在状态大小和集成步骤增加的情况下,Parareal的条件可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RNC: Reliable Network Property Classifier Based on Graph Embedding NFV Optimization Algorithm for Shortest Path and Service Function Assignment I/O Scheduling for Limited-Size Burst-Buffers Deployed High Performance Computing Efficient Fault-Tolerant Syndrome Measurement of Quantum Error-Correcting Codes Based on "Flag" Adaptive Clustering Strategy Based on Capacity Weight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1