Metamodeling for large-scale optimization tasks based on object networks

L. Werbos, R. Kozma, Rodrigo Silva-Lugo, G. E. Pazienza, P. Werbos
{"title":"Metamodeling for large-scale optimization tasks based on object networks","authors":"L. Werbos, R. Kozma, Rodrigo Silva-Lugo, G. E. Pazienza, P. Werbos","doi":"10.1109/IJCNN.2011.6033602","DOIUrl":null,"url":null,"abstract":"Optimization in large-scale networks - such as large logistical networks and electric power grids involving many thousands of variables - is a very challenging task. In this paper, we present the theoretical basis and the related experiments involving the development and use of visualization tools and improvements in existing best practices in managing optimization software, as preparation for the use of “metamodeling” - the insertion of complex neural networks or other universal nonlinear function approximators into key parts of these complicated and expensive computations; this novel approach has been developed by the new Center for Large-Scale Integrated Optimization and Networks (CLION) at University of Memphis, TN.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Optimization in large-scale networks - such as large logistical networks and electric power grids involving many thousands of variables - is a very challenging task. In this paper, we present the theoretical basis and the related experiments involving the development and use of visualization tools and improvements in existing best practices in managing optimization software, as preparation for the use of “metamodeling” - the insertion of complex neural networks or other universal nonlinear function approximators into key parts of these complicated and expensive computations; this novel approach has been developed by the new Center for Large-Scale Integrated Optimization and Networks (CLION) at University of Memphis, TN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对象网络的大规模优化任务元建模
大型网络的优化——例如大型物流网络和涉及数千个变量的电网——是一项非常具有挑战性的任务。在本文中,我们提出了理论基础和相关实验,涉及可视化工具的开发和使用以及管理优化软件中现有最佳实践的改进,作为使用“元建模”的准备-将复杂的神经网络或其他通用非线性函数逼近器插入这些复杂和昂贵的计算的关键部分;这种新颖的方法是由田纳西州孟菲斯大学新成立的大规模集成优化和网络中心(CLION)开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1