V. Lakafosis, A. Traille, Hoseon Lee, E. Gebara, M. Tentzeris, G. DeJean, D. Kirovski
{"title":"RFID-CoA: The RFID tags as certificates of authenticity","authors":"V. Lakafosis, A. Traille, Hoseon Lee, E. Gebara, M. Tentzeris, G. DeJean, D. Kirovski","doi":"10.1109/RFID.2011.5764623","DOIUrl":null,"url":null,"abstract":"The inadequacy of the traditional, digitally encoded RFID tags in combating counterfeiting prompts us to investigate new hardware-enabled technologies that can complement the remote identification functionality of typical RFIDs in an effective and very low cost way. In this paper, we present RFID-CoA; a system that aims to render typical RFID tags physically unique and hard to near-exactly replicate by complementing them with random 3D scattering structures, which serve as certificates of authenticity (CoA). The unique near-field response, or “fingerprint”, of the CoAs is extracted as a set of S21 curves by our reader prototype, the design and development details of which are discussed. The results of our performance analysis show that the intersection probability of the false positive and false negative error probability curves is inconceivably small (<10−200). The RFID-CoA tag's lifecycle from fabrication site to store is presented, and a strategy to block potential attacks is discussed. Our system bridges the world of RFID with a large array of anti-counterfeiting applications by exploiting “hardware-enabled”, modified-material scattering characteristics in the near-field. Based on our multifaceted analysis, we firmly believe that the demonstrated RFID-CoA technology can prove a valuable tool for the low-cost ubiquitous applicability of RFID technology against counterfeiting.","PeriodicalId":222446,"journal":{"name":"2011 IEEE International Conference on RFID","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on RFID","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID.2011.5764623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The inadequacy of the traditional, digitally encoded RFID tags in combating counterfeiting prompts us to investigate new hardware-enabled technologies that can complement the remote identification functionality of typical RFIDs in an effective and very low cost way. In this paper, we present RFID-CoA; a system that aims to render typical RFID tags physically unique and hard to near-exactly replicate by complementing them with random 3D scattering structures, which serve as certificates of authenticity (CoA). The unique near-field response, or “fingerprint”, of the CoAs is extracted as a set of S21 curves by our reader prototype, the design and development details of which are discussed. The results of our performance analysis show that the intersection probability of the false positive and false negative error probability curves is inconceivably small (<10−200). The RFID-CoA tag's lifecycle from fabrication site to store is presented, and a strategy to block potential attacks is discussed. Our system bridges the world of RFID with a large array of anti-counterfeiting applications by exploiting “hardware-enabled”, modified-material scattering characteristics in the near-field. Based on our multifaceted analysis, we firmly believe that the demonstrated RFID-CoA technology can prove a valuable tool for the low-cost ubiquitous applicability of RFID technology against counterfeiting.