Intelligent Assignment Strategy for Multi-Target Adversarial Interception

Yang Yu, Yizhong Fang, Han Wu, Tuo Han, Q. Hu
{"title":"Intelligent Assignment Strategy for Multi-Target Adversarial Interception","authors":"Yang Yu, Yizhong Fang, Han Wu, Tuo Han, Q. Hu","doi":"10.1109/CAC57257.2022.10054926","DOIUrl":null,"url":null,"abstract":"The multi-missile confront multi-target is a classic target allocation issue in the combat scenario of multiple missiles intercepting multiple maneuvering targets. Traditional algorithms lack environmental assessment model, train quality, and indicator function in the adversarial environment. To this end, this paper aims to propose an intelligent assignment strategy which contains indicator function and evaluation model. Then, an indicator function and an evaluation model considering the miss distance, threat situation, and the number of specified interception targets are introduced into the reinforcement learning algorithm. The local and global reward functions are introduced to improve the training convergence and efficiency in the multi-missile multi-target confrontation scenario. Finally, simulation results are designed to check on advantage of intelligent allocation strategy.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10054926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The multi-missile confront multi-target is a classic target allocation issue in the combat scenario of multiple missiles intercepting multiple maneuvering targets. Traditional algorithms lack environmental assessment model, train quality, and indicator function in the adversarial environment. To this end, this paper aims to propose an intelligent assignment strategy which contains indicator function and evaluation model. Then, an indicator function and an evaluation model considering the miss distance, threat situation, and the number of specified interception targets are introduced into the reinforcement learning algorithm. The local and global reward functions are introduced to improve the training convergence and efficiency in the multi-missile multi-target confrontation scenario. Finally, simulation results are designed to check on advantage of intelligent allocation strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标对抗拦截的智能分配策略
多弹对抗多目标是多弹拦截多机动目标作战场景中的典型目标分配问题。传统算法缺乏对抗环境下的环境评价模型、训练质量和指标功能。为此,本文提出了一种包含指标函数和评价模型的智能分配策略。然后,在强化学习算法中引入了考虑脱靶量、威胁情况和指定拦截目标数量的指标函数和评估模型;为了提高多导弹多目标对抗场景下训练的收敛性和效率,引入了局部和全局奖励函数。最后,设计了仿真结果,验证了智能分配策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Object Tracking in Satellite Videos with Meta-updater and Knowledge Distillation An improved event-trigger-based robust 6-DOF spacecraft formation control scheme under restricted communication Adaptive Neural Fixed-time Tracking Control of Underactuated USVs With External Disturbances Computer-Aided Diagnosis of COVID-19 with Joint Instance Segmentation and Classification Prescribed-Time Backstepping Algorithms for Leader-Follower Multi-Agent Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1