Real-time audio processing for hearing aids using a model-based bayesian inference framework

M. Roa-Villescas, B. Vries, S. Stuijk, H. Corporaal
{"title":"Real-time audio processing for hearing aids using a model-based bayesian inference framework","authors":"M. Roa-Villescas, B. Vries, S. Stuijk, H. Corporaal","doi":"10.1145/3378678.3397528","DOIUrl":null,"url":null,"abstract":"Development of hearing aid (HA) signal processing algorithms entails an iterative process between two design steps, namely algorithm development and the embedded implementation. Algorithm designers favor high-level programming languages for several reasons including higher productivity, code readability and, perhaps most importantly, availability of state-of-the-art signal processing frameworks that open new research directions. Embedded software, on the other hand, is preferably implemented using a low-level programming language to allow finer control of the hardware, an essential trait in real-time processing applications. In this paper we present a technique that allows deploying DSP algorithms written in Julia, a modern high-level programming language, on a real-time HA processing platform known as openMHA. We demonstrate this technique by using a model-based Bayesian inference framework to perform real-time audio processing.","PeriodicalId":383191,"journal":{"name":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378678.3397528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Development of hearing aid (HA) signal processing algorithms entails an iterative process between two design steps, namely algorithm development and the embedded implementation. Algorithm designers favor high-level programming languages for several reasons including higher productivity, code readability and, perhaps most importantly, availability of state-of-the-art signal processing frameworks that open new research directions. Embedded software, on the other hand, is preferably implemented using a low-level programming language to allow finer control of the hardware, an essential trait in real-time processing applications. In this paper we present a technique that allows deploying DSP algorithms written in Julia, a modern high-level programming language, on a real-time HA processing platform known as openMHA. We demonstrate this technique by using a model-based Bayesian inference framework to perform real-time audio processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的贝叶斯推理框架的助听器实时音频处理
助听器(HA)信号处理算法的开发需要两个设计步骤之间的迭代过程,即算法开发和嵌入式实现。算法设计者偏爱高级编程语言有几个原因,包括更高的生产率,代码可读性,也许最重要的是,最先进的信号处理框架的可用性开辟了新的研究方向。另一方面,嵌入式软件最好使用低级编程语言来实现,以允许对硬件进行更精细的控制,这是实时处理应用程序的基本特征。在本文中,我们提出了一种技术,允许在称为openMHA的实时HA处理平台上部署用Julia(一种现代高级编程语言)编写的DSP算法。我们通过使用基于模型的贝叶斯推理框架来执行实时音频处理来演示这种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A secure hardware-software solution based on RISC-V, logic locking and microkernel Configuring loosely time-triggered wireless control software Analog implementation of arithmetic operations on real memristors Programming tensor cores from an image processing DSL Data-layout optimization based on memory-access-pattern analysis for source-code performance improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1