Multiple-case outlier detection in least-squares regression model using quantum-inspired evolutionary algorithm

Mozammel H. A. Khan
{"title":"Multiple-case outlier detection in least-squares regression model using quantum-inspired evolutionary algorithm","authors":"Mozammel H. A. Khan","doi":"10.1504/IJAISC.2010.038636","DOIUrl":null,"url":null,"abstract":"In ordinary statistical methods, multiple outliers in least-squares regression model are detected sequentially one after another, where smearing and masking effects give misleading results. If the potential multiple outliers can be detected simultaneously, smearing and masking effects can be avoided. Such multiple-case outlier detection is of combinatorial nature and 2N -1 sets of possible outliers need to be tested, where N is the number of data points. This exhaustive search is practically impossible. In this paper, we have used quantum-inspired evolutionary algorithm (QEA) for multiple-case outlier detection in least-squares regression model. An information criterion based fitness function incorporating extra penalty for number of potential outliers has been used for identifying the most appropriate set of potential outliers. Experimental results with four datasets from statistical literature show that the QEA effectively detects the most appropriate set of outliers.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2010.038636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In ordinary statistical methods, multiple outliers in least-squares regression model are detected sequentially one after another, where smearing and masking effects give misleading results. If the potential multiple outliers can be detected simultaneously, smearing and masking effects can be avoided. Such multiple-case outlier detection is of combinatorial nature and 2N -1 sets of possible outliers need to be tested, where N is the number of data points. This exhaustive search is practically impossible. In this paper, we have used quantum-inspired evolutionary algorithm (QEA) for multiple-case outlier detection in least-squares regression model. An information criterion based fitness function incorporating extra penalty for number of potential outliers has been used for identifying the most appropriate set of potential outliers. Experimental results with four datasets from statistical literature show that the QEA effectively detects the most appropriate set of outliers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子进化算法的最小二乘回归模型多情况异常点检测
在普通的统计方法中,最小二乘回归模型中的多个异常点是依次检测出来的,其中涂抹和掩蔽效应会产生误导性的结果。如果可以同时检测到潜在的多个异常值,则可以避免涂抹和掩蔽效果。这种多情况离群值检测具有组合性,需要测试2N -1组可能的离群值,其中N为数据点的数量。这种详尽的搜索实际上是不可能的。本文将量子启发进化算法(QEA)用于最小二乘回归模型的多情况异常点检测。利用基于信息准则的适应度函数,结合潜在异常值数目的额外惩罚,确定了最合适的潜在异常值集合。统计文献中4个数据集的实验结果表明,QEA能有效地检测出最合适的离群值集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1