Modeling and Understanding Future Action Decisions of Players during Online Gaming

Fabrizia Auletta, Gaurav Patil, Rachel W. Kallen, M. di Bernardo, Michael J. Richardson
{"title":"Modeling and Understanding Future Action Decisions of Players during Online Gaming","authors":"Fabrizia Auletta, Gaurav Patil, Rachel W. Kallen, M. di Bernardo, Michael J. Richardson","doi":"10.1145/3527188.3563926","DOIUrl":null,"url":null,"abstract":"Contemporary Supervised Machine Learning (SML) and explainable AI (artificial intelligence) methods can be employed to both model and understand the decision making behavior of human actors within a multi-agent task setting. Here, we apply such modeling approach to capture the decision-making behavior of human actors playing a 3-player online herding game called “Desert Herding”. Of particular interest is whether the modeling approach can be employed to predict and understand the target switching strategies of human herders at variable prediction horizons and whether the explainable AI tool SHAP can be leveraged to identify the key informational variables (features) underlying the players’ target selection decisions.","PeriodicalId":179256,"journal":{"name":"Proceedings of the 10th International Conference on Human-Agent Interaction","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3527188.3563926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary Supervised Machine Learning (SML) and explainable AI (artificial intelligence) methods can be employed to both model and understand the decision making behavior of human actors within a multi-agent task setting. Here, we apply such modeling approach to capture the decision-making behavior of human actors playing a 3-player online herding game called “Desert Herding”. Of particular interest is whether the modeling approach can be employed to predict and understand the target switching strategies of human herders at variable prediction horizons and whether the explainable AI tool SHAP can be leveraged to identify the key informational variables (features) underlying the players’ target selection decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建模和理解玩家在网络游戏中的未来行动决策
当代监督机器学习(SML)和可解释的AI(人工智能)方法可以用来建模和理解多智能体任务设置中人类参与者的决策行为。在这里,我们运用这种建模方法来捕捉人类参与者在玩一款名为“沙漠放牧”的3人在线放牧游戏时的决策行为。特别令人感兴趣的是,建模方法是否可以用于预测和理解人类牧民在可变预测范围内的目标切换策略,以及是否可以利用可解释的AI工具SHAP来识别玩家目标选择决策背后的关键信息变量(特征)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hype Dlive: XR Live Performance System for Improving Passenger Comfort in Autonomous Driving Talk, Listen and Keep Me Company: A Mixed Methods Analysis of Children’s Perspectives Towards Robot Reading Companions A User-Centered Evaluation of the Data-Driven Sign Language Avatar System: A Pilot Study A Computer Game-based Tangible Upper Limb Rehabilitation Device Let’s Compete! The Influence of Human-Agent Competition and Collaboration on Agent Learning and Human Perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1