Preprocessing Position Data of Mobile Objects

Nicola Hönle, M. Großmann, D. Nicklas, B. Mitschang
{"title":"Preprocessing Position Data of Mobile Objects","authors":"Nicola Hönle, M. Großmann, D. Nicklas, B. Mitschang","doi":"10.1109/MDM.2008.27","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of a component for the preprocessing of position data taken from moving objects. The movement of mobile objects is represented by piece wise functions over time that approximate the real object movement and significantly reduce the initial data volume such that efficient storage and analysis of object trajectories can be achieved. The maximal acceptable deviation - an input parameter of our algorithms - of the approximations also includes the uncertainty of the position sensor measurements. We analyze and compare five different lossy preprocessing methods. Our results clearly indicate that even with simple approaches, a more than sufficient overall performance can be achieved.","PeriodicalId":365750,"journal":{"name":"The Ninth International Conference on Mobile Data Management (mdm 2008)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Conference on Mobile Data Management (mdm 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2008.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present the design and implementation of a component for the preprocessing of position data taken from moving objects. The movement of mobile objects is represented by piece wise functions over time that approximate the real object movement and significantly reduce the initial data volume such that efficient storage and analysis of object trajectories can be achieved. The maximal acceptable deviation - an input parameter of our algorithms - of the approximations also includes the uncertainty of the position sensor measurements. We analyze and compare five different lossy preprocessing methods. Our results clearly indicate that even with simple approaches, a more than sufficient overall performance can be achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动物体位置数据的预处理
我们设计并实现了一个用于对运动物体的位置数据进行预处理的组件。随着时间的推移,移动物体的运动由分段函数表示,该函数近似真实物体的运动,并显着减少初始数据量,从而可以实现有效的物体轨迹存储和分析。最大可接受偏差-我们算法的输入参数-的近似值也包括位置传感器测量的不确定性。分析比较了五种不同的有损预处理方法。我们的结果清楚地表明,即使使用简单的方法,也可以获得足够的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-data Delivery Based on Network Coding in On-demand Broadcast A Profile Anonymization Model for Privacy in a Personalized Location Based Service Environment CarWeb: A Traffic Data Collection Platform MOIR: A Prototype for Managing Moving Objects in Road Networks GeoLife: Managing and Understanding Your Past Life over Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1