No-reference stereoscopic video quality assessment based on Tchebichef moment

Yuxin Chen, Ming-Chang Wen
{"title":"No-reference stereoscopic video quality assessment based on Tchebichef moment","authors":"Yuxin Chen, Ming-Chang Wen","doi":"10.1117/12.2644706","DOIUrl":null,"url":null,"abstract":"We propose a no-reference (NR) stereoscopic video quality assessment (SVQA) model based on Tchebichef moment in this paper. Specifically, we extract keyframes according to mutual information between adjacent frames, and then the extracted keyframes are segmented to patches to calculate low-order Tchebichef moments. Since the strong description ability of Tchebichef moment, and different order of Tchebichef moment can represent independent features with minimal information redundancy, we extract statistical features of Tchebichef moment on computed patches as spatial features. Considering the influence of distortions in spatiotemporal domain to video quality, we use the three-dimensional derivative of Gaussian filters to calculate the spatiotemporal energy responses and extract statistical features from the responses as spatiotemporal features. Finally, we combine the spatial and spatiotemporal features to predict the quality of stereoscopic videos. The proposed model is evaluated on the NAMA3DS1-COSPAD1, SVQA and Waterloo IVC phase I databases. The experimental results show that the proposed model achieved competitive performance as compared with existing SVQA models.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a no-reference (NR) stereoscopic video quality assessment (SVQA) model based on Tchebichef moment in this paper. Specifically, we extract keyframes according to mutual information between adjacent frames, and then the extracted keyframes are segmented to patches to calculate low-order Tchebichef moments. Since the strong description ability of Tchebichef moment, and different order of Tchebichef moment can represent independent features with minimal information redundancy, we extract statistical features of Tchebichef moment on computed patches as spatial features. Considering the influence of distortions in spatiotemporal domain to video quality, we use the three-dimensional derivative of Gaussian filters to calculate the spatiotemporal energy responses and extract statistical features from the responses as spatiotemporal features. Finally, we combine the spatial and spatiotemporal features to predict the quality of stereoscopic videos. The proposed model is evaluated on the NAMA3DS1-COSPAD1, SVQA and Waterloo IVC phase I databases. The experimental results show that the proposed model achieved competitive performance as compared with existing SVQA models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于切比切夫矩的无参考立体视频质量评价
提出了一种基于切比切夫矩的无参考立体视频质量评价模型。具体而言,我们根据相邻帧之间的互信息提取关键帧,然后将提取的关键帧分割成小块,计算低阶切比切夫矩。由于Tchebichef矩具有较强的描述能力,且不同阶数的Tchebichef矩能够以最小的信息冗余表示独立的特征,因此我们提取计算patch上的Tchebichef矩的统计特征作为空间特征。考虑到时空域的畸变对视频质量的影响,我们使用高斯滤波器的三维导数来计算时空能量响应,并从响应中提取统计特征作为时空特征。最后,结合空间特征和时空特征对立体视频的质量进行预测。在NAMA3DS1-COSPAD1、SVQA和Waterloo IVC phase I数据库上对该模型进行了评估。实验结果表明,与现有的SVQA模型相比,该模型取得了较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ship detection in optical remote sensing images based on saliency and rotation-invariant feature Deformable voxel grids for shape comparisons Correction of images projected on non-white surfaces based on deep neural network Self-supervision based super-resolution approach for light field refocused image Multi-visual information fusion and aggregation for video action classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1