Binary Search based Maximum Power Point Tracking Algorithm for Photovoltaic System

Haris Muhović, Almedin Salkić, Emina Melic, Neira Džananović, M. Saric, D. Jokić, S. Lale
{"title":"Binary Search based Maximum Power Point Tracking Algorithm for Photovoltaic System","authors":"Haris Muhović, Almedin Salkić, Emina Melic, Neira Džananović, M. Saric, D. Jokić, S. Lale","doi":"10.1109/MECO58584.2023.10155099","DOIUrl":null,"url":null,"abstract":"This paper presents the implementation of the Binary Search Algorithm (BSA) to determine the Maximum Power Point (MPP) of a photovoltaic (PV) system under variable weather conditions. Additionally, the conventional well-known Perturb and Observe (P&O) algorithm is also implemented to be compared with the binary search based Maximum Power Point Tracking (MPPT) algorithm. Both algorithms are implemented in real time in MATLAB/Simulink environment. The experimental study is performed using the two 260 W series connected PV modules, the buck converter, and Humusoft MF 634 card to enable real-time operation. The value of the duty cycle for the buck converter is being updated in each step moving the operation point closer to MPP. The obtained experimental results demonstrate that the binary search based MPPT algorithm is more efficient and accurate when compared to the P&O MPPT algorithm.","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10155099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the implementation of the Binary Search Algorithm (BSA) to determine the Maximum Power Point (MPP) of a photovoltaic (PV) system under variable weather conditions. Additionally, the conventional well-known Perturb and Observe (P&O) algorithm is also implemented to be compared with the binary search based Maximum Power Point Tracking (MPPT) algorithm. Both algorithms are implemented in real time in MATLAB/Simulink environment. The experimental study is performed using the two 260 W series connected PV modules, the buck converter, and Humusoft MF 634 card to enable real-time operation. The value of the duty cycle for the buck converter is being updated in each step moving the operation point closer to MPP. The obtained experimental results demonstrate that the binary search based MPPT algorithm is more efficient and accurate when compared to the P&O MPPT algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二叉搜索的光伏系统最大功率点跟踪算法
本文提出了在可变天气条件下确定光伏发电系统最大功率点(MPP)的二叉搜索算法(BSA)。此外,还实现了传统的Perturb and Observe (P&O)算法,并与基于二叉搜索的最大功率点跟踪(MPPT)算法进行了比较。两种算法均在MATLAB/Simulink环境下实时实现。实验研究采用两个260 W串联的光伏模块、降压变换器和Humusoft MF 634卡进行实时操作。降压转换器的占空比的值在每一步中都在更新,使工作点更接近MPP。实验结果表明,与P&O MPPT算法相比,基于二叉搜索的MPPT算法具有更高的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Blockchain Platforms for Generation and Verification of Diplomas Minimizing the Total Completion Time of Jobs for a Permutation Flow-Shop System Double Buffered Angular Speed Measurement Method for Self-Calibration of Magnetoresistive Sensors Quantum Resilient Public Key Cryptography in Internet of Things Crop yield forecasting with climate data using PCA and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1