S. Denisikhin, V. N. Emel’yanov, K. Volkov, I. Teterina
{"title":"Numerical simulation of gas-dynamics processes in thrust vectorable nozzle","authors":"S. Denisikhin, V. N. Emel’yanov, K. Volkov, I. Teterina","doi":"10.33257/phchgd.19.2.741","DOIUrl":null,"url":null,"abstract":"A numerical simulation of the gas-dynamic processes in the thrust vectorable nozzle of the solid rocket motor is considered. Construction of a geometric model and a computational mesh, and their reconstruction at each time step are discussed. Calculations of the flowfield of combustion products in the pre-nozzle chamber and nozzle block are carried out for various angles of nozzle rotation. The distributions of the gas dynamic parameters in the pre-nozzle volume corresponding to the outflow of the combustion products from the cylindrical channel and starshaped channel are compared, as well as the solutions of the problem obtained in quasistationary and unsteady formulations. The effects of the channel shape on the distribution of flow parameters and formation of a vortex flow structure in the nozzle block are discussed.","PeriodicalId":309290,"journal":{"name":"Physical-Chemical Kinetics in Gas Dynamics","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical-Chemical Kinetics in Gas Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33257/phchgd.19.2.741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A numerical simulation of the gas-dynamic processes in the thrust vectorable nozzle of the solid rocket motor is considered. Construction of a geometric model and a computational mesh, and their reconstruction at each time step are discussed. Calculations of the flowfield of combustion products in the pre-nozzle chamber and nozzle block are carried out for various angles of nozzle rotation. The distributions of the gas dynamic parameters in the pre-nozzle volume corresponding to the outflow of the combustion products from the cylindrical channel and starshaped channel are compared, as well as the solutions of the problem obtained in quasistationary and unsteady formulations. The effects of the channel shape on the distribution of flow parameters and formation of a vortex flow structure in the nozzle block are discussed.