{"title":"Mean shrinkage improves the classification of ERP signals by exploiting additional label information","authors":"J. Höhne, B. Blankertz, K. Müller, Daniel Bartz","doi":"10.1109/PRNI.2014.6858523","DOIUrl":null,"url":null,"abstract":"Linear discriminant analysis (LDA) is the most commonly used classification method for single trial data in a brain-computer interface (BCI) framework. The popularity of LDA arises from its robustness, simplicity and high accuracy. However, the standard LDA approach is not capable to exploit sublabel information (such as stimulus identity), which is accessible in data from event related potentials (ERPs): it assumes that the evoked potentials are independent of the stimulus identity and dependent only on the users' attentional state. We question this assumption and investigate several methods which extract subclass-specific features from ERP data. Moreover, we propose a novel classification approach which exploits subclass-specific features using mean shrinkage. Based on a reanalysis of two BCI data sets, we show that our novel approach outperforms the standard LDA approach, while being computationally highly efficient.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Linear discriminant analysis (LDA) is the most commonly used classification method for single trial data in a brain-computer interface (BCI) framework. The popularity of LDA arises from its robustness, simplicity and high accuracy. However, the standard LDA approach is not capable to exploit sublabel information (such as stimulus identity), which is accessible in data from event related potentials (ERPs): it assumes that the evoked potentials are independent of the stimulus identity and dependent only on the users' attentional state. We question this assumption and investigate several methods which extract subclass-specific features from ERP data. Moreover, we propose a novel classification approach which exploits subclass-specific features using mean shrinkage. Based on a reanalysis of two BCI data sets, we show that our novel approach outperforms the standard LDA approach, while being computationally highly efficient.