PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation

Naiyu Gao, Fei He, Jian Jia, Yanhu Shan, Haoyang Zhang, Xin Zhao, Kaiqi Huang
{"title":"PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation","authors":"Naiyu Gao, Fei He, Jian Jia, Yanhu Shan, Haoyang Zhang, Xin Zhao, Kaiqi Huang","doi":"10.1109/CVPR52688.2022.00168","DOIUrl":null,"url":null,"abstract":"This paper presents a unified framework for depth-aware panoptic segmentation (DPS), which aims to reconstruct 3D scene with instance-level semantics from one single image. Prior works address this problem by simply adding a dense depth regression head to panoptic segmentation (PS) networks, resulting in two independent task branches. This neglects the mutually-beneficial relations between these two tasks, thus failing to exploit handy instance-level semantic cues to boost depth accuracy while also producing sub-optimal depth maps. To overcome these limitations, we propose a unified framework for the DPS task by applying a dynamic convolution technique to both the PS and depth prediction tasks. Specifically, instead of predicting depth for all pixels at a time, we generate instance-specific kernels to predict depth and segmentation masks for each instance. Moreover, leveraging the instance-wise depth estimation scheme, we add additional instance-level depth cues to assist with supervising the depth learning via a new depth loss. Extensive experiments on Cityscapes-DPS and SemKITTI-DPS show the effectiveness and promise of our method. We hope our unified solution to DPS can lead a new paradigm in this area. Code is available at https://github.com/NaiyuGao/PanopticDepth.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a unified framework for depth-aware panoptic segmentation (DPS), which aims to reconstruct 3D scene with instance-level semantics from one single image. Prior works address this problem by simply adding a dense depth regression head to panoptic segmentation (PS) networks, resulting in two independent task branches. This neglects the mutually-beneficial relations between these two tasks, thus failing to exploit handy instance-level semantic cues to boost depth accuracy while also producing sub-optimal depth maps. To overcome these limitations, we propose a unified framework for the DPS task by applying a dynamic convolution technique to both the PS and depth prediction tasks. Specifically, instead of predicting depth for all pixels at a time, we generate instance-specific kernels to predict depth and segmentation masks for each instance. Moreover, leveraging the instance-wise depth estimation scheme, we add additional instance-level depth cues to assist with supervising the depth learning via a new depth loss. Extensive experiments on Cityscapes-DPS and SemKITTI-DPS show the effectiveness and promise of our method. We hope our unified solution to DPS can lead a new paradigm in this area. Code is available at https://github.com/NaiyuGao/PanopticDepth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PanopticDepth:深度感知全视分割的统一框架
提出了一种统一的深度感知全景分割框架,旨在从单幅图像中重构具有实例级语义的三维场景。先前的工作通过简单地在全光分割(PS)网络中添加密集深度回归头来解决这个问题,从而产生两个独立的任务分支。这忽略了这两个任务之间的互利关系,因此未能利用方便的实例级语义线索来提高深度准确性,同时也产生了次优深度图。为了克服这些限制,我们提出了一个统一的DPS任务框架,将动态卷积技术应用于PS和深度预测任务。具体来说,我们不是一次预测所有像素的深度,而是生成特定于实例的内核来预测每个实例的深度和分割掩码。此外,利用基于实例的深度估计方案,我们添加了额外的实例级深度线索,以通过新的深度损失来帮助监督深度学习。在cityscape - dps和SemKITTI-DPS上的大量实验表明了我们的方法的有效性和前景。我们希望我们对DPS的统一解决方案能够在这一领域引领一个新的范式。代码可从https://github.com/NaiyuGao/PanopticDepth获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Aperture Imaging with Events and Frames PhotoScene: Photorealistic Material and Lighting Transfer for Indoor Scenes A Unified Model for Line Projections in Catadioptric Cameras with Rotationally Symmetric Mirrors Distinguishing Unseen from Seen for Generalized Zero-shot Learning Virtual Correspondence: Humans as a Cue for Extreme-View Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1