Recurrent Neural Networks with Fractional Order Gradient Method

Honggang Yang, Rui Fan, Jiejie Chen, Mengfei Xu
{"title":"Recurrent Neural Networks with Fractional Order Gradient Method","authors":"Honggang Yang, Rui Fan, Jiejie Chen, Mengfei Xu","doi":"10.1109/icaci55529.2022.9837518","DOIUrl":null,"url":null,"abstract":"In view of the possibility that Recurrent Neural Network(RNN)’s stochastic gradient descent method will converge to the local optimum problem, two fractional stochastic gradient descent methods are proposed in this paper. The methods respectively use the fractional order substitution derivative part defined by Caputo and the fractional order substitution difference form defined by Riemann Liouville to improve the updating method of network parameters. Combining with the gradient descent characteristics, the influence of fractional order on the training results is discussed, and two adaptive order adjustment methods are proposed. Experiments on MNIST and FashionMNIST datasets show that the fractional stochastic gradient optimization algorithm can improve the classification accuracy and training speed of recurrent neural network.","PeriodicalId":412347,"journal":{"name":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icaci55529.2022.9837518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In view of the possibility that Recurrent Neural Network(RNN)’s stochastic gradient descent method will converge to the local optimum problem, two fractional stochastic gradient descent methods are proposed in this paper. The methods respectively use the fractional order substitution derivative part defined by Caputo and the fractional order substitution difference form defined by Riemann Liouville to improve the updating method of network parameters. Combining with the gradient descent characteristics, the influence of fractional order on the training results is discussed, and two adaptive order adjustment methods are proposed. Experiments on MNIST and FashionMNIST datasets show that the fractional stochastic gradient optimization algorithm can improve the classification accuracy and training speed of recurrent neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分数阶梯度法递归神经网络
针对递归神经网络(RNN)的随机梯度下降方法收敛于局部最优问题的可能性,提出了两种分数阶随机梯度下降方法。分别利用Caputo定义的分数阶替换导数部分和Riemann Liouville定义的分数阶替换差分形式对网络参数的更新方法进行改进。结合梯度下降特征,讨论了分数阶对训练结果的影响,提出了两种自适应阶数调整方法。在MNIST和FashionMNIST数据集上的实验表明,分数阶随机梯度优化算法可以提高递归神经网络的分类精度和训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speed Estimation of Video Target Based on Siamese Convolutional Network and Kalman Filtering Aspect Term Extraction and Categorization for Chinese MOOC Reviews A Global Harmony Search Algorithm Based on Tent Chaos Map and Elite Reverse Learning An Improved Superpixel-based Fuzzy C-Means Method for Complex Picture Segmentation Tasks New Results on Finite-Time Synchronization of Delayed Fuzzy Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1