Image Segmentation Using Hardware Forest Classifiers

Richard Neil Pittman, A. Forin, A. Criminisi, J. Shotton, A. Mahram
{"title":"Image Segmentation Using Hardware Forest Classifiers","authors":"Richard Neil Pittman, A. Forin, A. Criminisi, J. Shotton, A. Mahram","doi":"10.1109/FCCM.2013.20","DOIUrl":null,"url":null,"abstract":"Image segmentation is the process of partitioning an image into segments or subsets of pixels for purposes of further analysis, such as separating the interesting objects in the foreground from the un-interesting objects in the background. In many image processing applications, the process requires a sequence of computational steps on a per pixel basis, thereby binding the performance to the size and resolution of the image. As applications require greater resolution and larger images the computational resources of this step can quickly exceed those of available CPUs, especially in the power and thermal constrained areas of consumer electronics and mobile. In this work, we use a hardware tree-based classifier to solve the image segmentation problem. The application is background removal (BGR) from depth-maps obtained from the Microsoft Kinect sensor. After the image is segmented, subsequent steps then classify the objects in the scene. The approach is flexible: to address different application domains we only need to change the trees used by the classifiers. We describe two distinct approaches and evaluate their performance using the commercial-grade testing environment used for the Microsoft Xbox gaming console.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Image segmentation is the process of partitioning an image into segments or subsets of pixels for purposes of further analysis, such as separating the interesting objects in the foreground from the un-interesting objects in the background. In many image processing applications, the process requires a sequence of computational steps on a per pixel basis, thereby binding the performance to the size and resolution of the image. As applications require greater resolution and larger images the computational resources of this step can quickly exceed those of available CPUs, especially in the power and thermal constrained areas of consumer electronics and mobile. In this work, we use a hardware tree-based classifier to solve the image segmentation problem. The application is background removal (BGR) from depth-maps obtained from the Microsoft Kinect sensor. After the image is segmented, subsequent steps then classify the objects in the scene. The approach is flexible: to address different application domains we only need to change the trees used by the classifiers. We describe two distinct approaches and evaluate their performance using the commercial-grade testing environment used for the Microsoft Xbox gaming console.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像分割是将图像划分为像素段或像素子集以进行进一步分析的过程,例如将前景中感兴趣的对象与背景中不感兴趣的对象分开。在许多图像处理应用中,该过程需要以每个像素为基础的一系列计算步骤,从而将性能与图像的大小和分辨率绑定在一起。由于应用程序需要更高的分辨率和更大的图像,这一步的计算资源可能很快超过可用的cpu,特别是在消费电子和移动设备的功率和热受限领域。在这项工作中,我们使用基于硬件树的分类器来解决图像分割问题。该应用程序是从微软Kinect传感器获得的深度图中去除背景(BGR)。在对图像进行分割之后,接下来的步骤就是对场景中的物体进行分类。这种方法很灵活:要处理不同的应用程序域,我们只需要更改分类器使用的树。我们描述了两种不同的方法,并使用用于Microsoft Xbox游戏机的商业级测试环境评估它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Escaping the Academic Sandbox: Realizing VPR Circuits on Xilinx Devices Exploiting Input Parameter Uncertainty for Reducing Datapath Precision of SPICE Device Models Accurate Thermal-Profile Estimation and Validation for FPGA-Mapped Circuits Boosting Memory Performance of Many-Core FPGA Device through Dynamic Precedence Graph A Fast and Accurate FPGA-Based Fault Injection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1