Fast DOA estimation algorithm using pseudo covariance matrix

Jung-Tae Kim, D. Han
{"title":"Fast DOA estimation algorithm using pseudo covariance matrix","authors":"Jung-Tae Kim, D. Han","doi":"10.1109/VETECS.2003.1207596","DOIUrl":null,"url":null,"abstract":"This paper presents a fast direction of arrival (DOA) estimation algorithm that can rapidly estimate the incidence angles of signals using a pseudo covariance matrix even under coherent signal conditions. The conventional multiple signal classification (MUSIC) algorithm requires hundreds of snapshots to produce a covariance matrix of signals, as such, it cannot perform a DOA estimation while acquiring this covariance matrix. In addition, the MUSIC algorithm cannot be used under rapidly changing or correlated signal conditions. In contrast, the proposed algorithm obtains the bearing response and directional spectrum after acquiring a pseudo covariance matrix for each snapshot. The incidence angles can then be exactly estimated by combining the bearing response and directional spectrum. Accordingly, unlike the MUSIC algorithm, since the proposed algorithm only uses a single snapshot to obtain the pseudo covariance matrix. It can rapidly estimate the DOAs of signals even when they are correlated.","PeriodicalId":272763,"journal":{"name":"The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECS.2003.1207596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a fast direction of arrival (DOA) estimation algorithm that can rapidly estimate the incidence angles of signals using a pseudo covariance matrix even under coherent signal conditions. The conventional multiple signal classification (MUSIC) algorithm requires hundreds of snapshots to produce a covariance matrix of signals, as such, it cannot perform a DOA estimation while acquiring this covariance matrix. In addition, the MUSIC algorithm cannot be used under rapidly changing or correlated signal conditions. In contrast, the proposed algorithm obtains the bearing response and directional spectrum after acquiring a pseudo covariance matrix for each snapshot. The incidence angles can then be exactly estimated by combining the bearing response and directional spectrum. Accordingly, unlike the MUSIC algorithm, since the proposed algorithm only uses a single snapshot to obtain the pseudo covariance matrix. It can rapidly estimate the DOAs of signals even when they are correlated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于伪协方差矩阵的快速DOA估计算法
提出了一种基于伪协方差矩阵的快速到达方向估计算法,该算法可以在相干信号条件下快速估计信号的入射角。传统的多信号分类(MUSIC)算法需要数百个快照来生成信号的协方差矩阵,因此无法在获取该协方差矩阵的同时进行DOA估计。此外,MUSIC算法不能在快速变化或相关的信号条件下使用。相比之下,该算法在获取每个快照的伪协方差矩阵后获得方位响应和方向谱。结合方位响应和方向谱,可以准确估计入射角。因此,与MUSIC算法不同,由于所提出的算法仅使用单个快照获取伪协方差矩阵。即使是相关信号,该算法也能快速估计出信号的doa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User satisfaction models and scheduling algorithms for packet-switched services in UMTS A study of 2.3 GHz bands propagation characteristic measured in Korea Performance evaluation of Bluetooth using interference-detection-based frequency hopping On channel estimation for OFDM systems in multipath environments with relatively large delay spread Optimised MLSE equaliser for fast channel tracking and reliable decoding when using space time DPSK block codes for future WPAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1