Divide and Translate Legal Text Sentence by Using Its Logical Structure

Bui Thanh Hung, Minh Le Nguyen, Akira Shimazu
{"title":"Divide and Translate Legal Text Sentence by Using Its Logical Structure","authors":"Bui Thanh Hung, Minh Le Nguyen, Akira Shimazu","doi":"10.1109/KICSS.2012.19","DOIUrl":null,"url":null,"abstract":"Translating legal text is generally considered to be difficult because legal text has some characteristics that make it different from other daily-use documents and legal text is usually long and complicated. In order boost the legal text translation quality, splitting an input sentence becomes mandatory. In this paper, we propose a novel method based on the logical structure of legal text sentence for dividing and translating legal text. We use a statistical learning method-Conditional Random Fields (CRFs) with rich linguistic information to recognize the logical structure of legal text sentence. We adapt the logical structure of legal text sentence to divide the sentence. By doing so, translation quality improves. Our experiments show that our approach can achieve better result for both Japanese-English and English-Japanese legal text translation by BLEU, NIST and TER score.","PeriodicalId":309736,"journal":{"name":"2012 Seventh International Conference on Knowledge, Information and Creativity Support Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Seventh International Conference on Knowledge, Information and Creativity Support Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KICSS.2012.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Translating legal text is generally considered to be difficult because legal text has some characteristics that make it different from other daily-use documents and legal text is usually long and complicated. In order boost the legal text translation quality, splitting an input sentence becomes mandatory. In this paper, we propose a novel method based on the logical structure of legal text sentence for dividing and translating legal text. We use a statistical learning method-Conditional Random Fields (CRFs) with rich linguistic information to recognize the logical structure of legal text sentence. We adapt the logical structure of legal text sentence to divide the sentence. By doing so, translation quality improves. Our experiments show that our approach can achieve better result for both Japanese-English and English-Japanese legal text translation by BLEU, NIST and TER score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用法律文本句子的逻辑结构对其进行分译
法律文本的翻译通常被认为是困难的,因为法律文本具有与其他日常使用的文件不同的一些特点,而且法律文本通常很长很复杂。为了提高法律文本的翻译质量,必须对输入句子进行拆分。本文提出了一种基于法律文本句子逻辑结构的法律文本分割与翻译新方法。我们使用了一种统计学习方法——具有丰富语言信息的条件随机场(conditional Random Fields, CRFs)来识别法律文本句子的逻辑结构。我们采用法律文本句子的逻辑结构来划分句子。通过这样做,可以提高翻译质量。我们的实验表明,我们的方法可以在BLEU、NIST和TER分数的翻译中获得更好的日英和英日法律文本翻译结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework of an Extended Reading Passage Grading System for Personalised English Learning Knowledge Management and E-governance: A Case Study of E-kiosk in India Knowledge Systems for User Applications and Education Demand Response Architectures and Load Management Algorithms for Energy-Efficient Power Grids: A Survey Towards more Efficient Building Energy Management Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1