The application of Akaike information criterion based pruning to nonparametric density estimates

J. Solka, C. Priebe, G. Rogers, W. Poston, D. Marchette
{"title":"The application of Akaike information criterion based pruning to nonparametric density estimates","authors":"J. Solka, C. Priebe, G. Rogers, W. Poston, D. Marchette","doi":"10.1109/WITS.1994.513903","DOIUrl":null,"url":null,"abstract":"This paper examines the application of Akaike (1974) information criterion (AIC) based pruning to the refinement of nonparametric density estimates obtained via the adaptive mixtures (AM) procedure of Priebe (see JASA, vol.89, no.427, p.796-806, 1994) and Marchette. The paper details a new technique that uses these two methods in conjunction with one another to predict the appropriate number of terms in the mixture model of an unknown density. Results that detail the procedure's performance when applied to different distributional classes are presented. Results are presented on artificially generated data, well known data sets, and some features for mammographic screening.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper examines the application of Akaike (1974) information criterion (AIC) based pruning to the refinement of nonparametric density estimates obtained via the adaptive mixtures (AM) procedure of Priebe (see JASA, vol.89, no.427, p.796-806, 1994) and Marchette. The paper details a new technique that uses these two methods in conjunction with one another to predict the appropriate number of terms in the mixture model of an unknown density. Results that detail the procedure's performance when applied to different distributional classes are presented. Results are presented on artificially generated data, well known data sets, and some features for mammographic screening.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Akaike信息准则的剪枝在非参数密度估计中的应用
本文研究了Akaike(1974)基于信息准则(AIC)的剪枝在Priebe自适应混合(AM)过程获得的非参数密度估计的细化中的应用(见JASA, vol.89, no. 11)。(4), p.796-806, 1994)。本文详细介绍了一种新技术,该技术将这两种方法相互结合,以预测未知密度混合模型中的适当项数。给出了应用于不同分布类时该过程性能的详细结果。结果呈现在人工生成的数据,众所周知的数据集,以及乳房x线摄影筛查的一些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1