Stanislav Lange, Heegon Kim, Seyeon Jeong, Heeyoul Choi, Jae-Hyung Yoo, J. W. Hong
{"title":"Predicting VNF Deployment Decisions under Dynamically Changing Network Conditions","authors":"Stanislav Lange, Heegon Kim, Seyeon Jeong, Heeyoul Choi, Jae-Hyung Yoo, J. W. Hong","doi":"10.23919/CNSM46954.2019.9012734","DOIUrl":null,"url":null,"abstract":"In addition to providing network operators with benefits in terms of flexibility and cost efficiency, softwarization paradigms like SDN and NFV are key enablers for the concept of Service Function Chaining (SFC). The corresponding networks need to support a wide range of services and applications with highly heterogeneous requirements that change dynamically during the network’s lifetime. Hence, efficient management and operation of such networks requires a high degree of automation that is paired with fast and proactive decisions in order to cope with these phenomena.In particular, determining the optimal number of VNF instances that is required for accommodating current and upcoming demands is a crucial task that also affects subsequent management decisions. To enable fast and proactive decisions in this context, we propose a machine learning-based approach that uses recent monitoring data to predict whether to adapt the current number of VNF instances of a given type. Furthermore, we present a methodology for generating labeled training data that reflects temporal dynamics and heterogeneous demands of real world networks. We demonstrate the feasibility of the approach using two different network topologies that represent WAN and mobile edge computing use cases, respectively. Additionally, we investigate how well the models generalize among networks and provide guidelines regarding the prediction horizon, i.e., how far ahead predictions can be performed in a reliable manner.","PeriodicalId":273818,"journal":{"name":"2019 15th International Conference on Network and Service Management (CNSM)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM46954.2019.9012734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
In addition to providing network operators with benefits in terms of flexibility and cost efficiency, softwarization paradigms like SDN and NFV are key enablers for the concept of Service Function Chaining (SFC). The corresponding networks need to support a wide range of services and applications with highly heterogeneous requirements that change dynamically during the network’s lifetime. Hence, efficient management and operation of such networks requires a high degree of automation that is paired with fast and proactive decisions in order to cope with these phenomena.In particular, determining the optimal number of VNF instances that is required for accommodating current and upcoming demands is a crucial task that also affects subsequent management decisions. To enable fast and proactive decisions in this context, we propose a machine learning-based approach that uses recent monitoring data to predict whether to adapt the current number of VNF instances of a given type. Furthermore, we present a methodology for generating labeled training data that reflects temporal dynamics and heterogeneous demands of real world networks. We demonstrate the feasibility of the approach using two different network topologies that represent WAN and mobile edge computing use cases, respectively. Additionally, we investigate how well the models generalize among networks and provide guidelines regarding the prediction horizon, i.e., how far ahead predictions can be performed in a reliable manner.