Identity-Invariant Facial Landmark Frontalization For Facial Expression Analysis

Vassilios Vonikakis, Stefan Winkler
{"title":"Identity-Invariant Facial Landmark Frontalization For Facial Expression Analysis","authors":"Vassilios Vonikakis, Stefan Winkler","doi":"10.1109/ICIP40778.2020.9190989","DOIUrl":null,"url":null,"abstract":"We propose a frontalization technique for 2D facial landmarks, designed to aid in the analysis of facial expressions. It employs a new normalization strategy aiming to minimize identity variations, by displacing groups of facial landmarks to standardized locations. The technique operates directly on 2D landmark coordinates, does not require additional feature extraction and as such is computationally light. It achieves considerable improvement over a reference approach, justifying its use as an efficient preprocessing step for facial expression analysis based on geometric features.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a frontalization technique for 2D facial landmarks, designed to aid in the analysis of facial expressions. It employs a new normalization strategy aiming to minimize identity variations, by displacing groups of facial landmarks to standardized locations. The technique operates directly on 2D landmark coordinates, does not require additional feature extraction and as such is computationally light. It achieves considerable improvement over a reference approach, justifying its use as an efficient preprocessing step for facial expression analysis based on geometric features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于面部表情分析的身份不变面部地标化
我们提出了一种二维面部地标的正面化技术,旨在帮助分析面部表情。它采用了一种新的规范化策略,旨在通过将一组面部地标置换到标准化位置来最大限度地减少身份变化。该技术直接在二维地标坐标上操作,不需要额外的特征提取,因此计算量很轻。与参考方法相比,它取得了相当大的改进,证明了它可以作为基于几何特征的面部表情分析的有效预处理步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1