{"title":"Analysis on Opinion Words Extraction in Electronic Product Reviews","authors":"Sint Sint Aung","doi":"10.4018/ijsssp.2019010103","DOIUrl":null,"url":null,"abstract":"Online user reviews are increasingly becoming important for measuring the quality of different products and services. Sentiment classification or opinion mining involves studying and building a system that collects data from online and examines the opinions. Sentiment classification is also defined as opinion extraction as the computational research area of subjective information towards different products. Opinion mining or sentiment classification has attracted in many research areas because of its usefulness in natural language processing and other area of applications. Extracting opinion words and product features are also important tasks in opinion mining. In this work an unsupervised approach was proposed to extract opinions and product features without training examples. To obtain the dependency relation between the product aspects and opinions, this work used StanfordCoreNLP dependency parser. From these relations, rules are predified to extract product and opinions. The main advantage of this approach is that there is no need for training data and it has domain independence. Acoording to the experimental results, the modified algorithm gets better results than the double propagation algorithm.","PeriodicalId":135841,"journal":{"name":"Int. J. Syst. Softw. Secur. Prot.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Syst. Softw. Secur. Prot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsssp.2019010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Online user reviews are increasingly becoming important for measuring the quality of different products and services. Sentiment classification or opinion mining involves studying and building a system that collects data from online and examines the opinions. Sentiment classification is also defined as opinion extraction as the computational research area of subjective information towards different products. Opinion mining or sentiment classification has attracted in many research areas because of its usefulness in natural language processing and other area of applications. Extracting opinion words and product features are also important tasks in opinion mining. In this work an unsupervised approach was proposed to extract opinions and product features without training examples. To obtain the dependency relation between the product aspects and opinions, this work used StanfordCoreNLP dependency parser. From these relations, rules are predified to extract product and opinions. The main advantage of this approach is that there is no need for training data and it has domain independence. Acoording to the experimental results, the modified algorithm gets better results than the double propagation algorithm.