{"title":"Cross-Game Modeling of Player's Behaviour in Free-To-Play Games","authors":"Andrej Vítek","doi":"10.1145/3340631.3398677","DOIUrl":null,"url":null,"abstract":"Player modelling is an important task for almost any game creator, which helps in understanding the player-base. One of the major issues is an early leave of players which makes modelling them challenging. In our research, we focus on the cold-start problem by utilizing information about a player from multiple games or other players in a given game. Although multiple studies focus on cross-game modelling, they still often require manual mapping of features or don't consider a player's behaviour specific to the given game. Our proposed method is based on transfer learning and unsupervised translation. In addition, we propose a combination of group-based and individual player models.","PeriodicalId":417607,"journal":{"name":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340631.3398677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Player modelling is an important task for almost any game creator, which helps in understanding the player-base. One of the major issues is an early leave of players which makes modelling them challenging. In our research, we focus on the cold-start problem by utilizing information about a player from multiple games or other players in a given game. Although multiple studies focus on cross-game modelling, they still often require manual mapping of features or don't consider a player's behaviour specific to the given game. Our proposed method is based on transfer learning and unsupervised translation. In addition, we propose a combination of group-based and individual player models.