Target counting and location detection in electromagnetics using convolutional neural networks

Mohsen Sabbaghi, Jun Zhang, G. Hanson
{"title":"Target counting and location detection in electromagnetics using convolutional neural networks","authors":"Mohsen Sabbaghi, Jun Zhang, G. Hanson","doi":"10.23919/USNC-URSIRSM52661.2021.9552343","DOIUrl":null,"url":null,"abstract":"Here, we showcase an application of neural networks (NNs) to solve an inverse problem in electromagnetics. Wires are randomly distributed into an area of known dimensions. The wires are then illuminated with a monochromatic plane wave (PW) at a certain angle of incidence, and the electromagnetic (EM) field measured at a finite number of points along the perimeter of the area is then fed into a convolutional neural network (CNN) designed to predict either (i) the number of the wires or (ii) the location of the wires.","PeriodicalId":365284,"journal":{"name":"2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 USNC-URSI Radio Science Meeting (USCN-URSI RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSIRSM52661.2021.9552343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we showcase an application of neural networks (NNs) to solve an inverse problem in electromagnetics. Wires are randomly distributed into an area of known dimensions. The wires are then illuminated with a monochromatic plane wave (PW) at a certain angle of incidence, and the electromagnetic (EM) field measured at a finite number of points along the perimeter of the area is then fed into a convolutional neural network (CNN) designed to predict either (i) the number of the wires or (ii) the location of the wires.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的电磁学目标计数和定位检测
在这里,我们展示了一个应用神经网络(nn)来解决电磁学中的一个逆问题。导线随机分布在已知尺寸的区域中。然后用单色平面波(PW)以一定的入射角照射导线,然后沿着该区域的周长在有限数量的点上测量电磁场(EM),然后将其输入卷积神经网络(CNN),该网络旨在预测(i)导线的数量或(ii)导线的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low Power and Low Cost Millimeter-Wave Digital Beamformer Using An Orthogonal Coding Scheme A Field Test for Phaseless Measurements for Nearfield Inspections of Navigation Systems with UAVs Using Ray Tracing to Model the Plasmaspheric Wave Field for Active Experiments in Space Analysis of Conjugate Satellite and Ground EMIC Wave Observations Lunar propagation modeling using 2D Parabolic Wave and 3D Ray Tracing Solvers at 1.8 GHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1