Depression Detection Using Convolutional Neural Networks

Farzana Arefin Nazira, Sharna Rani Das, Sadah Anjum Shanto, M. F. Mridha
{"title":"Depression Detection Using Convolutional Neural Networks","authors":"Farzana Arefin Nazira, Sharna Rani Das, Sadah Anjum Shanto, M. F. Mridha","doi":"10.1109/SPICSCON54707.2021.9885517","DOIUrl":null,"url":null,"abstract":"Facial Expression Recognition (FER) has been an essential field in the Deep Learning area since the arrival of big data. Human psychological activity is reflected by human facial expressions that can provide significant knowledge about human nature. In that time, depression has become a severe mental illness. It is vital to detect depressed people. To detect depression, we have proposed a system based on CNN, OpenCV, Haar Cascade Classifier. Haar Cascade Classifier is a machine learning algorithm used for face detection. Convolution layers are used in the proposed combination technique. Furthermore, no datasets available that represents the natural expressions of the depressed face and can be used to detect depression. So, We have generated a Depressed and Not Depressed (DND) dataset which contains the 5000 images. Our proposed system has been evaluated using the DND dataset and achieved accuracy 81% , precision 87% , recall 88%.","PeriodicalId":159505,"journal":{"name":"2021 IEEE International Conference on Signal Processing, Information, Communication & Systems (SPICSCON)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Signal Processing, Information, Communication & Systems (SPICSCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPICSCON54707.2021.9885517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Facial Expression Recognition (FER) has been an essential field in the Deep Learning area since the arrival of big data. Human psychological activity is reflected by human facial expressions that can provide significant knowledge about human nature. In that time, depression has become a severe mental illness. It is vital to detect depressed people. To detect depression, we have proposed a system based on CNN, OpenCV, Haar Cascade Classifier. Haar Cascade Classifier is a machine learning algorithm used for face detection. Convolution layers are used in the proposed combination technique. Furthermore, no datasets available that represents the natural expressions of the depressed face and can be used to detect depression. So, We have generated a Depressed and Not Depressed (DND) dataset which contains the 5000 images. Our proposed system has been evaluated using the DND dataset and achieved accuracy 81% , precision 87% , recall 88%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的抑郁检测
自大数据时代到来以来,面部表情识别(FER)一直是深度学习领域的一个重要领域。人类的心理活动是通过人类的面部表情来反映的,面部表情可以提供关于人性的重要知识。在那个时候,抑郁症已经成为一种严重的精神疾病。发现抑郁症患者是至关重要的。为了检测抑郁症,我们提出了一个基于CNN、OpenCV、Haar级联分类器的系统。哈尔级联分类器是一种用于人脸检测的机器学习算法。所提出的组合技术采用了卷积层。此外,没有可用的数据集来表示抑郁面部的自然表情,并可用于检测抑郁。因此,我们已经生成了一个包含5000张图像的抑郁和不抑郁(DND)数据集。我们提出的系统已经使用DND数据集进行了评估,准确率为81%,精密度为87%,召回率为88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact Multiband Fern Fractal Antenna for GPS/Bluetooth/WLAN Applications A Novel Approach to Support Distance relay application in a TCSC compensated line Align and Conquer: An Ensemble Approach to Classify Aggressive Texts from Social Media Deep Learning for Network Slicing and Self-Healing in 5G Systems Hardware Simulation of BRAM Digital FIR filter for Noise Removal of ECG Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1