Data Mining Using Clustering Algorithm as Tool for Poverty Analysis

J. A. Talingdan
{"title":"Data Mining Using Clustering Algorithm as Tool for Poverty Analysis","authors":"J. A. Talingdan","doi":"10.1145/3316615.3316672","DOIUrl":null,"url":null,"abstract":"Poverty in one place can be reduced or minimized if proper poverty alleviation programs are given to the community. In this study different clustering algorithms were evaluated using silhouette index to get the best clustering algorithm to group the households and analyze the poverty data. The k-means algorithm where k=3 outperformed DBSCAN and k-medoids with a silhouette of 0.308. The algorithm produced three groups or clusters and labelled as non-poor, near poor and poor. The result can help policy-makers formulate and implement poverty reduction policies and programs that are clear, reasonable, realistic, and enforceable.","PeriodicalId":268392,"journal":{"name":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Software and Computer Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316615.3316672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Poverty in one place can be reduced or minimized if proper poverty alleviation programs are given to the community. In this study different clustering algorithms were evaluated using silhouette index to get the best clustering algorithm to group the households and analyze the poverty data. The k-means algorithm where k=3 outperformed DBSCAN and k-medoids with a silhouette of 0.308. The algorithm produced three groups or clusters and labelled as non-poor, near poor and poor. The result can help policy-makers formulate and implement poverty reduction policies and programs that are clear, reasonable, realistic, and enforceable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类算法的贫困分析数据挖掘
一个地方的贫困可以减少或最小化,如果适当的扶贫项目给予社区。本研究利用剪影指数对不同的聚类算法进行了评价,以获得最佳的聚类算法来对家庭进行分组并分析贫困数据。k=3的k-means算法优于DBSCAN和k-medoids,剪影为0.308。该算法产生了三组或聚类,分别被标记为非贫穷、接近贫穷和贫穷。研究结果可以帮助决策者制定和实施明确、合理、现实和可执行的减贫政策和项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BookCeption An Enhanced Key Security of Playfair Cipher Algorithm Adoption Issues in DevOps from the Perspective of Continuous Delivery Pipeline A User Attribute Recommendation Algorithm and Peer3D Technology based WebVR P2P Transmission Scheme Survey of Hyperledger Blockchain Frameworks: Case Study in FPT University's Cryptocurrency Wallets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1