Distributed dyadic cyclic descent for non-negative matrix factorization

M. Ulfarsson, V. Solo, J. Sigurdsson, J. R. Sveinsson
{"title":"Distributed dyadic cyclic descent for non-negative matrix factorization","authors":"M. Ulfarsson, V. Solo, J. Sigurdsson, J. R. Sveinsson","doi":"10.1109/ICASSP.2016.7472489","DOIUrl":null,"url":null,"abstract":"Non-negative matrix factorization (NMF) has found use in fields such as remote sensing and computer vision where the signals of interest are usually non-negative. Data dimensions in these applications can be huge and traditional algorithms break down due to unachievable memory demands. One is then compelled to consider distributed algorithms. In this paper, we develop for the first time a distributed version of NMF using the alternating direction method of multipliers (ADMM) algorithm and dyadic cyclic descent. The algorithm is compared to well established variants of NMF using simulated data, and is also evaluated using real remote sensing hyperspectral data.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Non-negative matrix factorization (NMF) has found use in fields such as remote sensing and computer vision where the signals of interest are usually non-negative. Data dimensions in these applications can be huge and traditional algorithms break down due to unachievable memory demands. One is then compelled to consider distributed algorithms. In this paper, we develop for the first time a distributed version of NMF using the alternating direction method of multipliers (ADMM) algorithm and dyadic cyclic descent. The algorithm is compared to well established variants of NMF using simulated data, and is also evaluated using real remote sensing hyperspectral data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非负矩阵分解的分布二进循环下降
非负矩阵分解(NMF)在遥感和计算机视觉等领域中得到了应用,这些领域中感兴趣的信号通常是非负的。这些应用程序中的数据维度可能是巨大的,传统算法由于无法实现的内存需求而崩溃。于是人们不得不考虑分布式算法。本文首次利用乘法器的交替方向法(ADMM)算法和二进循环下降法开发了一种分布式的NMF。利用模拟数据将该算法与已建立的NMF变体进行了比较,并利用真实的遥感高光谱数据对该算法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1