HALF-SIFT: High-Accurate Localized Features for SIFT

Kai Cordes, Oliver Müller, B. Rosenhahn, J. Ostermann
{"title":"HALF-SIFT: High-Accurate Localized Features for SIFT","authors":"Kai Cordes, Oliver Müller, B. Rosenhahn, J. Ostermann","doi":"10.1109/CVPRW.2009.5204283","DOIUrl":null,"url":null,"abstract":"In this paper, the accuracy of feature points in images detected by the scale invariant feature transform (SIFT) is analyzed. It is shown that there is a systematic error in the feature point localization. The systematic error is caused by the improper subpel and subscale estimation, an interpolation with a parabolic function. To avoid the systematic error, the detection of high-accurate localized features (HALF) is proposed. We present two models for the localization of a feature point in the scale-space, a Gaussian and a Difference of Gaussians based model function. For evaluation, ground truth image data is synthesized to experimentally prove the systematic error of SIFT and to show that the error is eliminated using HALF. Experiments with natural image data show that the proposed methods increase the accuracy of the feature point positions by 13.9% using the Gaussian and by 15.6% using the Difference of Gaussians model.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, the accuracy of feature points in images detected by the scale invariant feature transform (SIFT) is analyzed. It is shown that there is a systematic error in the feature point localization. The systematic error is caused by the improper subpel and subscale estimation, an interpolation with a parabolic function. To avoid the systematic error, the detection of high-accurate localized features (HALF) is proposed. We present two models for the localization of a feature point in the scale-space, a Gaussian and a Difference of Gaussians based model function. For evaluation, ground truth image data is synthesized to experimentally prove the systematic error of SIFT and to show that the error is eliminated using HALF. Experiments with natural image data show that the proposed methods increase the accuracy of the feature point positions by 13.9% using the Gaussian and by 15.6% using the Difference of Gaussians model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半SIFT:高精度的SIFT局部特征
本文分析了尺度不变特征变换(SIFT)检测图像中特征点的精度。结果表明,在特征点定位中存在系统误差。系统误差主要是由于子尺度和子尺度估计不当,采用抛物线函数插值。为了避免系统误差,提出了高精度局部特征检测方法。提出了两种基于高斯函数和高斯差分函数的尺度空间特征点定位模型。为了评估,合成了真实图像数据,实验证明了SIFT的系统误差,并表明使用HALF可以消除误差。在自然图像数据上进行的实验表明,采用高斯模型和高斯差分模型分别将特征点定位精度提高了13.9%和15.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1