HyperPRAW

Carlos Fernandez Musoles, D. Coca, P. Richmond
{"title":"HyperPRAW","authors":"Carlos Fernandez Musoles, D. Coca, P. Richmond","doi":"10.1145/3337821.3337876","DOIUrl":null,"url":null,"abstract":"High Performance Computing (HPC) demand is on the rise, particularly for large distributed computing. HPC systems have, by design, very heterogeneous architectures, both in computation and in communication bandwidth, resulting in wide variations in the cost of communications between compute units. If large distributed applications are to take full advantage of HPC, the physical communication capabilities must be taken into consideration when allocating workload. Hypergraphs are good at modelling total volume of communication in parallel and distributed applications. To the best of our knowledge, there are no hypergraph partitioning algorithms to date that are architecture-aware. We propose a novel restreaming hypergraph partitioning algorithm (HyperPRAW) that takes advantage of peer to peer physical bandwidth profiling data to improve distributed applications performance in HPC systems. Our results show that not only the quality of the partitions achieved by our algorithm is comparable with state-of-the-art multilevel partitioning, but that the runtime performance in a synthetic benchmark is significantly reduced in 10 hypergraph models tested, with speedup factors of up to 14x.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High Performance Computing (HPC) demand is on the rise, particularly for large distributed computing. HPC systems have, by design, very heterogeneous architectures, both in computation and in communication bandwidth, resulting in wide variations in the cost of communications between compute units. If large distributed applications are to take full advantage of HPC, the physical communication capabilities must be taken into consideration when allocating workload. Hypergraphs are good at modelling total volume of communication in parallel and distributed applications. To the best of our knowledge, there are no hypergraph partitioning algorithms to date that are architecture-aware. We propose a novel restreaming hypergraph partitioning algorithm (HyperPRAW) that takes advantage of peer to peer physical bandwidth profiling data to improve distributed applications performance in HPC systems. Our results show that not only the quality of the partitions achieved by our algorithm is comparable with state-of-the-art multilevel partitioning, but that the runtime performance in a synthetic benchmark is significantly reduced in 10 hypergraph models tested, with speedup factors of up to 14x.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Express Link Placement for NoC-Based Many-Core Platforms Cartesian Collective Communication Artemis A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs diBELLA: Distributed Long Read to Long Read Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1