MEME: Real-time mobility estimation for mobile environments

S. Qayyum, U. Sadiq, Mohan J. Kumar
{"title":"MEME: Real-time mobility estimation for mobile environments","authors":"S. Qayyum, U. Sadiq, Mohan J. Kumar","doi":"10.1109/LCN.2014.6925765","DOIUrl":null,"url":null,"abstract":"Knowledge of user movement in mobile environments paves the way for intelligent resource allocation and event scheduling for a variety of applications. Existing schemes for estimating user mobility are limited in their scope as they rely on repetitive patterns of user movement. Such patterns may not exist, or are difficult to recognize in soft-real time, in open environments such as parks, malls, or streets. We propose a novel scheme for Real-time Mobility Estimation for Mobile Environments (MEME). MEME employs the concept of temporal distances and uses logistic regression to make real time estimations about user movement. MEME relies only on opportunistic message exchange and is fully distributed, scalable, and requires neither a central infrastructure nor Global Positioning System. MEME has been tested on real world and synthetic mobility traces - makes predictions about direction and count of users with up to 90% accuracy, enhances successful video downloads in shared environments.","PeriodicalId":143262,"journal":{"name":"39th Annual IEEE Conference on Local Computer Networks","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual IEEE Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2014.6925765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Knowledge of user movement in mobile environments paves the way for intelligent resource allocation and event scheduling for a variety of applications. Existing schemes for estimating user mobility are limited in their scope as they rely on repetitive patterns of user movement. Such patterns may not exist, or are difficult to recognize in soft-real time, in open environments such as parks, malls, or streets. We propose a novel scheme for Real-time Mobility Estimation for Mobile Environments (MEME). MEME employs the concept of temporal distances and uses logistic regression to make real time estimations about user movement. MEME relies only on opportunistic message exchange and is fully distributed, scalable, and requires neither a central infrastructure nor Global Positioning System. MEME has been tested on real world and synthetic mobility traces - makes predictions about direction and count of users with up to 90% accuracy, enhances successful video downloads in shared environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEME:移动环境的实时移动性估计
对移动环境中用户运动的了解为各种应用程序的智能资源分配和事件调度铺平了道路。现有的评估用户移动性的方案在其范围内是有限的,因为它们依赖于用户移动的重复模式。这样的模式可能不存在,或者在软实时、公园、商场或街道等开放环境中难以识别。提出了一种新的移动环境实时移动估计方案(MEME)。MEME采用时间距离的概念,并使用逻辑回归对用户的移动进行实时估计。MEME仅依赖于机会信息交换,是完全分布式的、可扩展的,既不需要中央基础设施,也不需要全球定位系统。MEME已经在真实世界和合成移动轨迹上进行了测试——预测方向和用户数量的准确率高达90%,提高了共享环境下视频下载的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inbound interdomain traffic engineering with LISP Delay tolerant handover for heterogeneous networks An approximation to rate-equalization fairness with logarithmic complexity for QoS Reducing MANET neighborhood discovery overhead WaP: Indoor localization and tracking using WiFi-Assisted Particle filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1