A divide-link algorithm based on fuzzy similarity for clustering networks

D. Gómez, J. Montero, J. Yáñez
{"title":"A divide-link algorithm based on fuzzy similarity for clustering networks","authors":"D. Gómez, J. Montero, J. Yáñez","doi":"10.1109/ISDA.2011.6121830","DOIUrl":null,"url":null,"abstract":"In this paper we present an efficient hierarchical clustering algorithm for relational data, being those relations modeled by a graph. The hierarchical clustering approach proposed in this paper is based on divisive and link criteria, to break the graph and join the nodes at different stages. We then apply this approach to a community detection problems based on the well-known edge line betweenness measure as the divisive criterium and a fuzzy similarity relation as the link criterium. We present also some computational results in some well-known examples like the Karate Zachary club-network, the Dolphins network, Les Miserables network and the Authors centrality network, comparing these results to some standard methodologies for hierarchical clustering problem, both for binary and valued graphs.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we present an efficient hierarchical clustering algorithm for relational data, being those relations modeled by a graph. The hierarchical clustering approach proposed in this paper is based on divisive and link criteria, to break the graph and join the nodes at different stages. We then apply this approach to a community detection problems based on the well-known edge line betweenness measure as the divisive criterium and a fuzzy similarity relation as the link criterium. We present also some computational results in some well-known examples like the Karate Zachary club-network, the Dolphins network, Les Miserables network and the Authors centrality network, comparing these results to some standard methodologies for hierarchical clustering problem, both for binary and valued graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊相似度的分链聚类算法
本文提出了一种高效的关系数据的层次聚类算法,即用图来建模的关系数据。本文提出的分层聚类方法是基于分裂准则和链接准则,对图进行分解,并将不同阶段的节点连接起来。然后,我们将该方法应用于基于众所周知的边缘线之间度量作为分裂准则和模糊相似关系作为链接准则的社区检测问题。我们还在一些著名的例子中给出了一些计算结果,如空手道Zachary俱乐部网络、海豚网络、悲惨世界网络和作者中心性网络,并将这些结果与二元图和值图的层次聚类问题的一些标准方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Binary Stock Event Model for stock trends forecasting: Forecasting stock trends via a simple and accurate approach with machine learning Facial expression recognition using entropy and brightness features An intelligent system for detecting faults in photovoltaic fields An efficient multi-objective evolutionary optimizer to design all-optical networks considering physical impairments and CAPEX Optimization of natural gas transmission network using genetic algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1