Learning to segment from misaligned and partial labels

Simone Fobi, Terence Conlon, Jay Taneja, V. Modi
{"title":"Learning to segment from misaligned and partial labels","authors":"Simone Fobi, Terence Conlon, Jay Taneja, V. Modi","doi":"10.1145/3378393.3402254","DOIUrl":null,"url":null,"abstract":"To extract information at scale, researchers are increasingly applying semantic segmentation techniques to remotely-sensed imagery. While fully-supervised learning enables accurate pixelwise segmentation, compiling the exhaustive datasets required is often prohibitively expensive, and open-source datasets that do exists are frequently inexact and non-exhaustive. In this paper, we present a novel and generalizable two-stage framework that enables improved pixelwise image segmentation given misaligned and missing annotations. First, we introduce the Alignment Correction Network to rectify incorrectly registered open source labels. Next, we demonstrate a segmentation model - the Pointer Segmentation Network - that uses corrected labels to predict infrastructure footprints despite missing annotations. We demonstrate the transferability of our method to lower quality data sources by applying the Alignment Correction Network to correct OpenStreetMaps building footprints, and we show the accuracy of the Pointer Segmentation Network in predicting cropland boundaries in California. Overall, our methodology is robust for multiple applications with varied amounts of training data present, thus offering a method to extract reliable information from noisy, partial data.","PeriodicalId":176951,"journal":{"name":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378393.3402254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

To extract information at scale, researchers are increasingly applying semantic segmentation techniques to remotely-sensed imagery. While fully-supervised learning enables accurate pixelwise segmentation, compiling the exhaustive datasets required is often prohibitively expensive, and open-source datasets that do exists are frequently inexact and non-exhaustive. In this paper, we present a novel and generalizable two-stage framework that enables improved pixelwise image segmentation given misaligned and missing annotations. First, we introduce the Alignment Correction Network to rectify incorrectly registered open source labels. Next, we demonstrate a segmentation model - the Pointer Segmentation Network - that uses corrected labels to predict infrastructure footprints despite missing annotations. We demonstrate the transferability of our method to lower quality data sources by applying the Alignment Correction Network to correct OpenStreetMaps building footprints, and we show the accuracy of the Pointer Segmentation Network in predicting cropland boundaries in California. Overall, our methodology is robust for multiple applications with varied amounts of training data present, thus offering a method to extract reliable information from noisy, partial data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习从不对齐和部分标签中分割
为了大规模提取信息,越来越多的研究人员将语义分割技术应用于遥感图像。虽然完全监督学习可以实现精确的像素分割,但编译所需的详尽数据集通常非常昂贵,并且存在的开源数据集通常是不精确和非详尽的。在本文中,我们提出了一种新颖且可推广的两阶段框架,该框架能够在给定不对齐和缺失注释的情况下改进像素图像分割。首先,我们引入对齐校正网络来纠正错误注册的开源标签。接下来,我们演示了一个分割模型——指针分割网络——它使用正确的标签来预测基础设施的足迹,尽管缺少注释。我们通过应用对齐校正网络来校正OpenStreetMaps的建筑足迹,证明了我们的方法在低质量数据源中的可移植性,并且我们展示了指针分割网络在预测加利福尼亚州农田边界方面的准确性。总体而言,我们的方法对于存在不同数量训练数据的多种应用具有鲁棒性,从而提供了一种从嘈杂的部分数据中提取可靠信息的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Features from Online Forums to Meet Social Needs of Breast Cancer Patients ICTs as Enablers of Resilient Social Capital for Ethnic Peace Persuasive information campaign to save water in Universities: An option for water-stressed areas? The "opaque panopticon": Why publishing data online doesn't make the State transparent? The case of India's livelihood program Competitive Cities: Establishing a Classification Model using Data Science-related Jobs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1