Car Detection from Very High-Resolution UAV Images Using Deep Learning Algorithms

Y. Kaya, H. Şenol, Abdurahman Yasin Yiğit, M. Yakar
{"title":"Car Detection from Very High-Resolution UAV Images Using Deep Learning Algorithms","authors":"Y. Kaya, H. Şenol, Abdurahman Yasin Yiğit, M. Yakar","doi":"10.14358/pers.22-00101r2","DOIUrl":null,"url":null,"abstract":"It is important to determine car density in parking lots, especially in hospitals, large enterprises, and residential areas, which are used intensively, in terms of executing existing management systems and making precise plans for the future. In this study, cars in parking lots were\n detected using high-resolution unmanned aerial vehicle (UAV) images with deep learning methods. We tested the performance of the two approaches by determining the number of cars in a parking lot using the You Only Look Once (YOLOv3) and Mask Region–Based Convolutional Neural Networks\n (Mask R-CNN) approaches as deep learning methods and the deep learning tool of Esri ArcGIS Pro. High-resolution UAV images were processed by photogrammetry and used as input products for the R-CNN and YOLOv3 algorithm. Recall, F1 score, precision ratio/uncertainty accuracy, and average producer\n accuracy of products automatically extracted with the algorithm were determined as 0.862/0.941, 0.874/0.946, 0.885/0.951, and 0.776/0.897 for R-CNN and YOLOv3, respectively.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00101r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is important to determine car density in parking lots, especially in hospitals, large enterprises, and residential areas, which are used intensively, in terms of executing existing management systems and making precise plans for the future. In this study, cars in parking lots were detected using high-resolution unmanned aerial vehicle (UAV) images with deep learning methods. We tested the performance of the two approaches by determining the number of cars in a parking lot using the You Only Look Once (YOLOv3) and Mask Region–Based Convolutional Neural Networks (Mask R-CNN) approaches as deep learning methods and the deep learning tool of Esri ArcGIS Pro. High-resolution UAV images were processed by photogrammetry and used as input products for the R-CNN and YOLOv3 algorithm. Recall, F1 score, precision ratio/uncertainty accuracy, and average producer accuracy of products automatically extracted with the algorithm were determined as 0.862/0.941, 0.874/0.946, 0.885/0.951, and 0.776/0.897 for R-CNN and YOLOv3, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习算法从高分辨率无人机图像中检测汽车
特别是在医院、大型企业、住宅等使用密集的停车场,确定停车场的车辆密度,对于执行现有的管理制度和制定精确的未来规划非常重要。在本研究中,使用深度学习方法的高分辨率无人机(UAV)图像检测停车场中的汽车。我们使用You Only Look Once (YOLOv3)和Mask - based Convolutional Neural Networks (Mask R-CNN)方法作为深度学习方法和Esri ArcGIS Pro的深度学习工具,通过确定停车场中的汽车数量来测试这两种方法的性能。采用摄影测量技术对高分辨率无人机图像进行处理,作为R-CNN和YOLOv3算法的输入产品。R-CNN和YOLOv3自动提取产品的召回率为0.862/0.941,F1评分为0.874/0.946,精密度/不确定度准确率为0.885/0.951,生产者平均准确率为0.776/0.897。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1