Deblurring of images by cellular neural networks with applications to microscopy

J.P. Miller, T. Roska, T. Szirányi, K. R. Crounse, L. Chua, L. Nemes
{"title":"Deblurring of images by cellular neural networks with applications to microscopy","authors":"J.P. Miller, T. Roska, T. Szirányi, K. R. Crounse, L. Chua, L. Nemes","doi":"10.1109/CNNA.1994.381673","DOIUrl":null,"url":null,"abstract":"In this paper it is shown how the Cellular Neural Network (CNN) can be used to perform image and volume deblurring, with particular emphases on applications to microscopy. We discuss the basic linear theory of the CNN including issues of stability and template size. It is observed that a CNN with a small template can be used to implement an Infinite Impulse Response filter. It is then shown how general deblurring problems can be addressed with a CNN when the blurring operator is known. The proposed application is to solve the basic 3-D confocal image reconstruction task about the form of the blurring operator, confocal behavior in microscope images can be obtained with only 3-5 acquired image planes. In addition, the stored program capability of the CNN Universal Machine would provide integration of several image processing and detection tasks in the same architecture.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper it is shown how the Cellular Neural Network (CNN) can be used to perform image and volume deblurring, with particular emphases on applications to microscopy. We discuss the basic linear theory of the CNN including issues of stability and template size. It is observed that a CNN with a small template can be used to implement an Infinite Impulse Response filter. It is then shown how general deblurring problems can be addressed with a CNN when the blurring operator is known. The proposed application is to solve the basic 3-D confocal image reconstruction task about the form of the blurring operator, confocal behavior in microscope images can be obtained with only 3-5 acquired image planes. In addition, the stored program capability of the CNN Universal Machine would provide integration of several image processing and detection tasks in the same architecture.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞神经网络图像去模糊及其在显微镜中的应用
在本文中,它显示了如何细胞神经网络(CNN)可以用来执行图像和体积去模糊,特别强调在显微镜应用。我们讨论了CNN的基本线性理论,包括稳定性和模板尺寸的问题。观察到一个小模板的CNN可以用来实现无限脉冲响应滤波器。然后展示了当模糊算子已知时,如何用CNN解决一般的去模糊问题。提出的应用是解决关于模糊算子形式的基本三维共焦图像重建任务,仅用3-5个获取的图像平面即可获得显微镜图像的共焦行为。此外,CNN通用机器的存储程序能力将在同一架构中集成多个图像处理和检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1