Derrick Nii-Laryea Botchway, J. Bentil, Charles Yeboah Henaku
{"title":"Effect of Partial Replacement of Coarse Aggregate with Electronic Waste Plastic in Light Weight Concrete","authors":"Derrick Nii-Laryea Botchway, J. Bentil, Charles Yeboah Henaku","doi":"10.30564/jmser.v5i2.4801","DOIUrl":null,"url":null,"abstract":"This study assessed the usefulness of the replacement of coarse aggregate partially with electronic waste (e-waste) plastic in lightweight concrete since developing countries have been challenged with management of e-waste as well as high cost of coarse aggregates for concrete production. Coarse aggregates were replaced with e-waste plastic in concrete at 5%, 10%, 15%, and 20% for a concrete class of C20. The particle size distribution of the e-waste plastic aggregates was determined as well as the slump, compressive strength, water absorption and bulk density of the concrete. Generally, the slump decreased as the e-waste increased. The compressive strengths decreased for the 5% and 10% replacement of coarse aggregates with e-waste but increased for the 15% and 20% replacement of coarse aggregate with e-waste. 0% water absorption was obtained for the 15% and 20% e-waste content while the 10% e-waste concrete obtained 0.01% and the 5% e-waste obtaining of 0.013% after 28days of curing. The densities of 5%, 10%, 15% and 20% e-waste plastic content decreased as compared to the 0% e-waste plastic content. The values of compressive strength obtained showed that coarse aggregate replacements by e-waste plastic at 15% and 20% may be appropriate for lightweight concrete of class C20/25 since compressive strengths ranged between 16.09 Nmm–2 and 22.87 Nmm–2. This implies that partial replacement of coarse aggregate with e-waste plastic may be useful for lightweight concrete as well as helping in eradicating the environment of the menace of e-waste plastic.","PeriodicalId":227013,"journal":{"name":"Journal of Management Science & Engineering Research","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Management Science & Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jmser.v5i2.4801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study assessed the usefulness of the replacement of coarse aggregate partially with electronic waste (e-waste) plastic in lightweight concrete since developing countries have been challenged with management of e-waste as well as high cost of coarse aggregates for concrete production. Coarse aggregates were replaced with e-waste plastic in concrete at 5%, 10%, 15%, and 20% for a concrete class of C20. The particle size distribution of the e-waste plastic aggregates was determined as well as the slump, compressive strength, water absorption and bulk density of the concrete. Generally, the slump decreased as the e-waste increased. The compressive strengths decreased for the 5% and 10% replacement of coarse aggregates with e-waste but increased for the 15% and 20% replacement of coarse aggregate with e-waste. 0% water absorption was obtained for the 15% and 20% e-waste content while the 10% e-waste concrete obtained 0.01% and the 5% e-waste obtaining of 0.013% after 28days of curing. The densities of 5%, 10%, 15% and 20% e-waste plastic content decreased as compared to the 0% e-waste plastic content. The values of compressive strength obtained showed that coarse aggregate replacements by e-waste plastic at 15% and 20% may be appropriate for lightweight concrete of class C20/25 since compressive strengths ranged between 16.09 Nmm–2 and 22.87 Nmm–2. This implies that partial replacement of coarse aggregate with e-waste plastic may be useful for lightweight concrete as well as helping in eradicating the environment of the menace of e-waste plastic.