Pembentukan Model Pohon Keputusan pada Database Car Evaluation Menggunakan Statistik Chi-Square

Retno Maharesi
{"title":"Pembentukan Model Pohon Keputusan pada Database Car Evaluation Menggunakan Statistik Chi-Square","authors":"Retno Maharesi","doi":"10.20473/conmatha.v4i1.34393","DOIUrl":null,"url":null,"abstract":"The study discusses problems related to the formation of a decision tree based on a collection of evaluation data records obtained from a number of car buyers. This secondary data was obtained from the UCL machine learning website. The purpose of this research is to produce a prototype algorithm for obtaining an inductive decision tree based on Chi-square statistics. An inductive decision tree formation method based on the Chi-square contingency test was compared with a decision tree obtained using a machine learning algorithm which was done using RapidMiner5 software. The work to produce an inductive decision tree was carried out by first processing data using Microsoft excel and next processed using SPSS software, on the crosstabs descriptive menu. The results of the two methods provide some kind of similar rules, in terms of the order of priority of the variables that most influencing people's decision to accept an automotive product. The formation of the decision tree uses a random sampling of size 300 data records among 1729 respondent data records in the car evaluation database. The resulting decision tree should have a minimal structure like a binary tree. This is possible because its formation is based on the statistical inferential method, so it does not require a separate pruning process as an addition step in the C4.5 algorithm, which actually this algorithm also considers aspects of the statistical significance.","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/conmatha.v4i1.34393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study discusses problems related to the formation of a decision tree based on a collection of evaluation data records obtained from a number of car buyers. This secondary data was obtained from the UCL machine learning website. The purpose of this research is to produce a prototype algorithm for obtaining an inductive decision tree based on Chi-square statistics. An inductive decision tree formation method based on the Chi-square contingency test was compared with a decision tree obtained using a machine learning algorithm which was done using RapidMiner5 software. The work to produce an inductive decision tree was carried out by first processing data using Microsoft excel and next processed using SPSS software, on the crosstabs descriptive menu. The results of the two methods provide some kind of similar rules, in terms of the order of priority of the variables that most influencing people's decision to accept an automotive product. The formation of the decision tree uses a random sampling of size 300 data records among 1729 respondent data records in the car evaluation database. The resulting decision tree should have a minimal structure like a binary tree. This is possible because its formation is based on the statistical inferential method, so it does not require a separate pruning process as an addition step in the C4.5 algorithm, which actually this algorithm also considers aspects of the statistical significance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
该研究讨论了基于从许多购车者那里获得的评估数据记录的集合形成决策树的相关问题。这些辅助数据来自伦敦大学学院的机器学习网站。本研究的目的是提出一种基于卡方统计的归纳决策树的原型算法。将基于卡方权变检验的归纳决策树生成方法与基于机器学习算法的决策树生成方法在RapidMiner5软件上进行了比较。产生归纳决策树的工作是通过首先使用Microsoft excel处理数据,然后使用SPSS软件在交叉表描述性菜单上进行处理。两种方法的结果提供了某种类似的规则,就最影响人们接受汽车产品的决定的变量的优先顺序而言。决策树的形成使用从汽车评价数据库的1729个应答者数据记录中随机抽取300条数据记录。最终的决策树应该具有像二叉树那样的最小结构。这是可能的,因为它的形成是基于统计推理的方法,所以在C4.5算法中不需要单独的修剪过程作为一个附加步骤,实际上该算法也考虑了统计显著性的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Triple-Seasonal ARIMA Untuk Peramalan Data Konsumsi Beban Listrik Simulasi Numerik Model Arus Lalu Lintas dengan Pengaruh Kepadatan Kendaraan dan Kondisi Jalan Tentang Rumus Induksi Matematika Desain dan Implementasi Perangkat Lunak Untuk Abstraksi Berhingga Sistem Max-Plus-Linear dengan Tree Tanpa Fungsi Rekursif Mathematical Modeling Of Household Plastic Waste Distribution Management With Transportation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1