An Efficient CNN Architecture for Image Classification on FPGA Accelerator

Shahmustafa Mujawar, D. Kiran, Hariharan Ramasangu
{"title":"An Efficient CNN Architecture for Image Classification on FPGA Accelerator","authors":"Shahmustafa Mujawar, D. Kiran, Hariharan Ramasangu","doi":"10.1109/ICAECC.2018.8479517","DOIUrl":null,"url":null,"abstract":"Image classification finds its suitability in applications ranging from medical diagnostics to autonomous vehicles. The existing architectures are computationally exhaustive, complex and less accurate. An accurate, simple and hardware efficient architecture is required to be developed for image classification. In this paper, Convolutional Neural Network (CNN) architecture has been proposed and validated using MNIST handwritten dataset. The adopted approaches of sliding-filter for convolution and parallel computation of Multiplication and Accumulation (MAC) operations resulted in optimized hardware architecture with reduced arithmetic operations and faster computations. The developed architecture has been implemented on Artix-7 FPGA and attained a significant improvement in speed compared to existing architecture working at 300MHz maximum operating frequency.","PeriodicalId":106991,"journal":{"name":"2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECC.2018.8479517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Image classification finds its suitability in applications ranging from medical diagnostics to autonomous vehicles. The existing architectures are computationally exhaustive, complex and less accurate. An accurate, simple and hardware efficient architecture is required to be developed for image classification. In this paper, Convolutional Neural Network (CNN) architecture has been proposed and validated using MNIST handwritten dataset. The adopted approaches of sliding-filter for convolution and parallel computation of Multiplication and Accumulation (MAC) operations resulted in optimized hardware architecture with reduced arithmetic operations and faster computations. The developed architecture has been implemented on Artix-7 FPGA and attained a significant improvement in speed compared to existing architecture working at 300MHz maximum operating frequency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于FPGA加速器的高效CNN图像分类体系
图像分类在从医疗诊断到自动驾驶汽车的各种应用中都很适合。现有的体系结构在计算上是详尽的、复杂的,而且不太准确。为了实现图像分类,需要开发一种准确、简单、硬件高效的体系结构。本文提出了卷积神经网络(CNN)架构,并使用MNIST手写数据集进行了验证。采用滑动滤波卷积和并行计算乘法累加运算的方法,优化了硬件结构,减少了算术运算,提高了计算速度。所开发的架构已在Artix-7 FPGA上实现,与工作在300MHz最大工作频率下的现有架构相比,速度有了显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Analysis of Two Novel Metamaterial Unit Cell for Antenna Engineering Distributed Component-Based Crawler for AJAX Applications Preprocessing and Binarization of Inscription Images using Phase Based Features Cellular Automata based Optimal Illumination in LED Based Lighting Systems Classification of Healthy and Pathological voices using MFCC and ANN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1