Human action recognition and retrieval using sole depth information

Yan-Ching Lin, Min-Chun Hu, Wen-Huang Cheng, Yung-Huan Hsieh, Hong-Ming Chen
{"title":"Human action recognition and retrieval using sole depth information","authors":"Yan-Ching Lin, Min-Chun Hu, Wen-Huang Cheng, Yung-Huan Hsieh, Hong-Ming Chen","doi":"10.1145/2393347.2396381","DOIUrl":null,"url":null,"abstract":"Observing the widespread use of Kinect-like depth cameras, in this work, we investigate into the problem of using sole depth data for human action recognition and retrieval in videos. We proposed the use of simple depth descriptors without learning optimization to achieve promising performances as compatible to those of the leading methods based on color images and videos, and can be effectively applied for real-time applications. Because of the infrared nature of depth cameras, the proposed approach will be especially useful under poor lighting conditions, e.g. the surveillance environments without sufficient lighting. Meanwhile, we proposed a large Depth-included Human Action video dataset, namely DHA, which contains 357 videos of performed human actions belonging to 17 categories. To the best of our knowledge, the DHA is one of the largest depth-included video datasets of human actions.","PeriodicalId":212654,"journal":{"name":"Proceedings of the 20th ACM international conference on Multimedia","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2393347.2396381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

Observing the widespread use of Kinect-like depth cameras, in this work, we investigate into the problem of using sole depth data for human action recognition and retrieval in videos. We proposed the use of simple depth descriptors without learning optimization to achieve promising performances as compatible to those of the leading methods based on color images and videos, and can be effectively applied for real-time applications. Because of the infrared nature of depth cameras, the proposed approach will be especially useful under poor lighting conditions, e.g. the surveillance environments without sufficient lighting. Meanwhile, we proposed a large Depth-included Human Action video dataset, namely DHA, which contains 357 videos of performed human actions belonging to 17 categories. To the best of our knowledge, the DHA is one of the largest depth-included video datasets of human actions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度信息的人体动作识别与检索
观察到kinect深度相机的广泛使用,在这项工作中,我们研究了在视频中使用单一深度数据进行人类动作识别和检索的问题。我们提出使用简单的深度描述符而不进行学习优化,可以获得与基于彩色图像和视频的领先方法兼容的良好性能,并且可以有效地应用于实时应用。由于深度相机的红外特性,所提出的方法在光线不足的情况下特别有用,例如在没有足够照明的监视环境中。同时,我们提出了一个包含深度的大型人类动作视频数据集,即DHA,它包含了357个人类动作的视频,属于17个类别。据我们所知,DHA是最大的深度包含人类行为的视频数据集之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROI-based protection scheme for high definition interactive video applications TouchPaper: making print interactive A genetic algorithm for audio retargeting Mining in-class social networks for large-scale pedagogical analysis Plug&touch: a mobile interaction solution for large display via vision-based hand gesture detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1