{"title":"Some comparisons of gene expression classifiers","authors":"Shinuk Kim, M. Kon, Hyowon Lee","doi":"10.1109/BIBM.2016.7822783","DOIUrl":null,"url":null,"abstract":"Numerous computational studies related to cancer have been published, but increasing prediction accuracy of molecular datasets remains a challenge. Here we present a comparison of prediction based on a feature selection method combined with machine learning, for microRNA-Seq (miRNA-Seq) and mRNA-Seq data. We have tested three different approaches: support vector machine, decision tree and k nearest neighbors, under two different feature selection methods: fisher feature selection and infinite feature selection.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Numerous computational studies related to cancer have been published, but increasing prediction accuracy of molecular datasets remains a challenge. Here we present a comparison of prediction based on a feature selection method combined with machine learning, for microRNA-Seq (miRNA-Seq) and mRNA-Seq data. We have tested three different approaches: support vector machine, decision tree and k nearest neighbors, under two different feature selection methods: fisher feature selection and infinite feature selection.