Fundamental Limits of Personalized Federated Linear Regression with Data Heterogeneity

Chun-Ying Hou, I-Hsiang Wang
{"title":"Fundamental Limits of Personalized Federated Linear Regression with Data Heterogeneity","authors":"Chun-Ying Hou, I-Hsiang Wang","doi":"10.1109/ISIT50566.2022.9834894","DOIUrl":null,"url":null,"abstract":"Federated learning is a nascent framework for collaborative machine learning over networks of devices with local data and local model updates. Data heterogeneity across the devices is one of the challenges confronting this emerging field. Personalization is a natural approach to simultaneously utilize information from the other users’ data and take data heterogeneity into account. In this work, we study the linear regression problem where the data across users are generated from different regression vectors. We present an information-theoretic lower bound of the minimax expected excess risk of personalized linear models. We show an upper bound that matches the lower bound within constant factors. The results characterize the effect of data heterogeneity on learning performance and the trade-off between sample size, problem difficulty, and distribution discrepancy, suggesting that the discrepancy-to-difficulty ratio is the key factor governing the effectiveness of heterogeneous data.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning is a nascent framework for collaborative machine learning over networks of devices with local data and local model updates. Data heterogeneity across the devices is one of the challenges confronting this emerging field. Personalization is a natural approach to simultaneously utilize information from the other users’ data and take data heterogeneity into account. In this work, we study the linear regression problem where the data across users are generated from different regression vectors. We present an information-theoretic lower bound of the minimax expected excess risk of personalized linear models. We show an upper bound that matches the lower bound within constant factors. The results characterize the effect of data heterogeneity on learning performance and the trade-off between sample size, problem difficulty, and distribution discrepancy, suggesting that the discrepancy-to-difficulty ratio is the key factor governing the effectiveness of heterogeneous data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有数据异质性的个性化联邦线性回归的基本限制
联邦学习是一个新兴的框架,用于在具有本地数据和本地模型更新的设备网络上进行协作机器学习。跨设备的数据异构是这个新兴领域面临的挑战之一。个性化是一种自然的方法,可以同时利用来自其他用户数据的信息并考虑到数据的异质性。在这项工作中,我们研究了线性回归问题,其中跨用户的数据由不同的回归向量生成。给出了个性化线性模型的最小、最大期望超额风险的信息论下界。我们给出了在常数因子范围内与下界匹配的上界。研究结果描述了数据异质性对学习绩效的影响,以及样本量、问题难度和分布差异之间的权衡关系,表明差异与难度比是控制异构数据有效性的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1